
Manual

AnyRover V2

16 November 2020
Public
1.8.17

Marco Wirz
Manuela Wick

AnyWeb AG
Hofwiesenstrasse 350, 8050 Zürich, Switzerland, Phone +41 58 219 11 11, Fax +41 58 219 11 00
www.anyweb.ch

Project

t

Date

Status

Version

Author(s)

Distribution

AnyRover
:
16 November 2020
page 2 / 120

Table of contents
1 Overview.. 5

1.1 Description..5
1.2 Hardware..5
1.3 Software..5
1.4 Libraries and tools..6

2 Short overview or only cowards read manuals...7

3 Operation of the AnyRover – Hardware...8

3.1 Front side...8
3.1.1 Antennas..8
3.1.2 USB...8
3.1.3 Console...8
3.1.4 Network...9
3.1.5 LEDs..9
3.1.6 Mode and Reset Button...9

3.2 Back side...9
3.2.1 Power..10
3.2.2 GPIO connector..10
3.2.3 DR inputs (only for dead reckoning variants)...11
3.2.4 Serial ports (optional)...13
3.2.5 DIP Switch...13
3.2.6 SIM card..14

3.3 Internal connections...14
3.3.1 MicroSD Card...14
3.3.2 Modem...14
3.3.3 PoE...15
3.3.4 Wireless LAN...15

3.4 Vehicle integration...15
3.4.1 Installation location..15
3.4.2 Antenna installation..17
3.4.3 Set installation position and backup signal..18
3.4.4 Calibration drive..19

3.5 Dimensional drawing..20

4 Configuration... 22

4.1 System configuration..22
4.1.1 Changing the configuration on the command line...23
4.1.2 Changing the configuration with a memory stick..23
4.1.3 Changing the configuration using SMS...23
4.1.4 Querying the configuration using SMS..25
4.1.5 Reset the configuration..25
4.1.6 Saving configuration templates...26

4.2 Sections...26
4.2.1 [system]...27
4.2.2 [switch]..28

AnyRover
:
16 November 2020
page 3 / 120

4.2.3 [time]...30
4.2.4 [watchdog]..30
4.2.5 [crontab]..31
4.2.6 [gpio]...31
4.2.7 [gps]...32
4.2.8 [sms]...35
4.2.9 [modem]...37
4.2.10 [usb]...38
4.2.11 [dhcp]...39
4.2.12 [dhcprelay]..40
4.2.13 [ftp]..40
4.2.14 [tftp]...41
4.2.15 [firewall]..41
4.2.16 [dyndns]..44
4.2.17 [ppp]...44
4.2.18 [chat_script]...45
4.2.19 [wan]...45
4.2.20 [ipsec]...46
4.2.21 [certificate]..49
4.2.22 [openvpn]..50
4.2.23 [clientconfigfile]..51
4.2.24 [tunnel]..51
4.2.25 [bridge]...52
4.2.26 [banner]..52
4.2.27 [daemons]..53
4.2.28 [script]...53
4.2.29 [webserver]..53
4.2.30 [wlan]..54
4.2.31 [authentication]..57
4.2.32 [ospf]...58
4.2.33 [snmp]...59
4.2.34 [dns]...60
4.2.35 [serports]...61
4.2.36 [openconnect]..61
4.2.37 [mobileip]...61
4.2.38 [scep]..63
4.2.39 [pelix]...65
4.2.40 [dsl]..66
4.2.41 [8021x]...67

5 Support... 69

5.1 Lock files..69
5.2 Helper programs..69

5.2.1 Modem status..69
5.2.2 Sending SMS...69
5.2.3 Central service...69
5.2.4 GPIO..70
5.2.5 AD converter..70

AnyRover
:
16 November 2020
page 4 / 120

5.2.6 Acceleration sensor..70
5.2.7 Datcom...70
5.2.8 PIC-Tool...70

5.3 Log files..70

6 Sample configurations.. 71

6.1 Permanent IPsec tunnel to the network..71
6.2 IPsec tunnel on request..72
6.3 IPsec server with multiple clients...72
6.4 2 local subnets with NAT...73
6.5 Wireless client...73
6.6 Roaming between WLAN and 3G..74
6.7 Wireless access point with DHCP server..74
6.8 Multiple client connections over IPsec using PSK..75
6.9 Sending files over E-mail...77
6.10 IPsec server for Cisco VPN clients...77
6.11 Setting GPO..78

A Contact.. 80

A.1 Responsible persons..80
A.1.1 Commercial...80
A.1.2 Technical project lead...80
A.1.3 Support and maintenance..80

B Default configuration file..81

C GNU General Public License..117

AnyRover
:
16 November 2020
page 5 / 120

1 Overview

1.1 Description

The AnyRover is a high speed 4G router. It contains a 4 port switch, a LTE modem, a GPS
receiver, and a USB and several general purpose IO (GPIO) connections. The device can
be extended with power over Ethernet (PoE), wireless LAN and DSL.

The AnyRover can connect to the Internet through the LTE interface, and provide this link
to the connected devices.

1.2 Hardware

Element Specification Possible extensions

Processor ARM9, 800MHz

RAM 512MB

Flash NAND Flash, 512MB

Serial console RS-232, 115200 8N1

Switch 100Mbit, 5 Port (4 external, 1
internal)

Supports VLANs

Power over Ethernet 802.3af PSE: Power Sourcing Equipment
PD: Powered Device

Total 2 Ports, both as PSE or PD

LTE/HSPA/GPRS Modem Huawei ME909s-120P

SIM-Card External access optional

USB Port USB2.0 HiSpeed

GPS receiver u-blox 8 Multi-GNNS Receiver u-blox 8 Multi-GNNS 3D-Dead
Reckoning Receiver

SD-Card Slot Support for SDHC
up to 32 GB

Multipurpose inputs 3 digital or analog Inputs with
10bit ADC

Multipurpose output 1 digital Output, max. 1.8A

RTC With supporting battery

Wireless LAN IEEE 802.11 a/b/g/n 2x IEEE 802.11 a/b/g/n

1.3 Software

Many of the programs used are licensed under the GPS or the LGPL. The licenses are
reproduced in the appendices. The source code of the respective programs can be
obtained from AnyWeb. This table lists the programs used.

AnyRover
:
16 November 2020
page 6 / 120

Function Program License Website

Operating system Linux Kernel 2.6 GPL www.kernel.org

Command line tools Busybox GPL www.busybox.net

SSH Client and Server Busybox GPL www.busybox.net

Client and Server Busybox GPL www.busybox.net

Firewall IPtables GPL www.netfilter.org

DHCP Server Busybox GPL www.busybox.net

DynDNS Support inadyn

PPP connection PPPd / chat GPL, BSD, Public
Domain

IPsec ipsec-tools IPsec-tools.sf.net

OpenVPN openvpn GPL www.openvpn.net

Web server boa www.boa.org

FTP Server Busybox GPL www.busybox.net

TFTP Server and Client Busybox GPL www.busybox.net

NTP Server and Client ntpd ntp.isc.org

Cron Jobs Busybox GPL www.busybox.net

SMS console gpio_daemon Developed by
AnyWeb

Editors vi and nano Busybox, nano GPL,

WLAN client (opt.) wpa_supplicant GPL / BSD hostap.epitest.fi/wpa_supplicant

WLAN Access Point (opt.),
RADIUS server

hostapd GPL / BSD hostap.epitest.fi

OSPF daemon quagga GPL www.quagga.net

SNMP daemon net-snmp div BSD www.net-snmp.org

1.4 Libraries and tools

Several libraries and tools are used in the AnyRover. This tables provides details.

Library / Tool License Web site

uClibc LGPL www.uclibc.org

USL LGPL opensource.katalix.com/openl2tp/

iproute2 GPL www.linux-foundation.org/en/Net:Iproute2

libnl LGPL people.suug.ch/~tgr/libnl/

libpcap BSD www.tcpdump.org

libncurses MIT license www.gnu.org/software/ncurses/ncurses.html

tcpdump BSD www.tcpdump.org

wget GPL www.gnu.org/software/wget/

AnyRover
:
16 November 2020
page 7 / 120

2 Short overview or only cowards read manuals

For operation, the AnyRover must be connected to the power supply. Input voltage is in
the range of 8..52V DC. A GSM and a (passive) GPS antenna must be connected to the
respective sockets.

With the default configuration, a SIM card from Swisscom can be inserted, and through
the Ethernet interface (using DHCP), the internet is available shortly thereafter.

Access to the device is through the console using a standard Cisco console cable with
the parameters 115200 8N1. As an alternative, access is possible over the network using
SSH (Ethernet and 3G/4G) or telnet (only Ethernet).

Login as user config, password cabtronix, or user root, password root. The config user can
only modify the configuration and show some system stats (help shows the available
commands), the root user has complete access and should act cautiously.

Configuration is done in one central file /etc/cablynx.conf. The default configuration is
also saved in /etc/conf.d/cablynx.factory. On the device, two editors are installed, vi
and nano (if you know neither, use nano!). The configuration file is extensively
commented. If the configuration is edited as user config, the system will update right
after terminating the editor, when working as user root, the update has to be started
manually (reboot or /etc/init.d/rcS config).

For security reasons the passwords should be changed before putting the device in a
productive environment (use the command passwd both for user root and config).

The full documentation is stored as a PDF file in English and German on the device in
the /root directory and on the webpage www.cablynx.ch

http://www.cablynx.ch/

AnyRover
:
16 November 2020
page 8 / 120

3 Operation of the AnyRover – Hardware

3.1 Front side

Figure 1: AnyRover V2 front side

3.1.1 Antennas
The AnyRover has two to four antenna connectors that can be supplied with SMA or
Fakra connectors. The GPS receivers requires an active GPS antenna with 3V supply
(passive available on request), the GSM modem requires an antenna that is UMTS and
LTE capable.

GPS: Center Frequency 1575.42MHz, Bandwidth ±1.023MHz, Impedance 50Ω

WLAN: Frequency: 2.4GHz, 5GHz

M1 (modem): Frequency Range: 824-960MHz, 1710-1880MHz, UMTS 1900-2170MHz, LTE
800-2600MHz, Impedance 50Ω

A suitable combination antenna is the model CT-AT104m from Celphone
(www.celphone.ch).

Warning: When connecting a GPS antenna to the GSM connector, the antenna can be
destroyed.

3.1.2 USB
The USB connector accepts any USB2.0 HiSpeed devices. By default, connected memory
sticks will automatically be mounted into the system.

Basically, any USB device can be operated, as long as a driver for the Linux kernel is
available. Depending on the device, the driver must be installed manually, and the
configuration for the device implemented.

3.1.3 Console
The console connector provides access to the system console, which is a serial RS-232
interface, accessible through a Cisco console cable. The description of the pins is shown
in Table 1: Description of the pins of the console. Baud rate is 115200 8N1.

AnyRover
:
16 November 2020
page 9 / 120

Pin Function

1 CTS

2 NC

3 TxD (AnyRover → PC)

4 Gnd

5 Gnd

6 RxD (PC → AnyRover)

7 NC

8 RTS

Table 1: Description of the pins of the console

Security warning: Through the system console, complete system access is possible.

3.1.4 Network
The four network ports are identical as per default configuration. It is possible to configure
VLAN such that the ports are in different logical nets.

The 2 ports 1 and 3 can be equipped with PoE modules, both ports either as PSE
(AnyRover supplies the peripheral with energy) or as PD (AnyRover is supplied through
PoE).

3.1.5 LEDs
There are four LEDs for power, modem, status and gps to show the current state of the
AnyRover. The other four LEDs are freely configurable. With the default configuration they
show the signal of the mobile network.

3.1.6 Mode and Reset Button
The two buttons can be configured in the cablynx.conf file. In the default configuration,
the reset button resets the configuration to default when it is pushed between 2 and 5
seconds. When it is pushed for more than five seconds, the AnyRover performs a reboot.
The mode button has no function in the default configuration.

3.2 Back side

Figure 2: AnyRover V2 back side

AnyRover
:
16 November 2020
page 10 / 120

3.2.1 Power
Power supply of the AnyRover is established either through the DC power or the GPIO
connector.

The power connection is a common power supply with a 5.5mm connector with a length
of 9.5mm. The positive connector is in the center, the pin has a diameter of 2.1mm. Input
voltage can range from 8V to 52V DC. The output power of the power supply is
recommended to be at least 10W for devices without power over Ethernet. If there are
PoE devices connected, then the output power should be at least 50W with an output
voltage of 10V or more.

If the AnyRover is supplied through the round power connector, the device remains
switched on independent of the state of the ignition signal.

3.2.2 GPIO connector
This connector allows the supply of the AnyRover as well as automatically switching the
device on and off depending on the ignition line of the vehicle. The pin placement is
indicated in figure Figure 3: GPIO connector with labelled pins.

Assembled cables are available, for specific requirements, these components can be
used:

Manufacturer / series Molex / MicroFit 3.0
connector housing: 43025-0800
crimp connections: 43030-0009
crimp tool: 63911-2800
contacts ejection tool: 11-03-0043

Figure 3: GPIO connector with labelled pins

Pin
number

Function connector DIN
72552

Wire
color

Remarks

1 GND 31 blue Either one or both ground connections can be used.

2 GND 31 brown Either one or both ground connections can be used.

3 Input 1 - yellow Digital switching level at approx 4.6V (raising) and 2.0V (falling).
Analog measure interval: 0 ... 6.6V.
Input impedance: 94kΩ.

AnyRover
:
16 November 2020
page 11 / 120

Pin
number

Function connector DIN
72552

Wire
color

Remarks

4 Input 2 - orange Digital switching level at approx 4.6V (raising) and 2.0V (falling).
Analog measure interval: 0 ... 6.6V.
Input impedance: 94kΩ.

5 Ignition 15 black Switching level: switch on at approx 2.0V, ignition detection at
approx 4.6V (raising) and 2.0V (falling).
Input impedance: 20kΩ.
To keep the device always on, connect this pin to Vin.

6 Vin 8..52V 30 red Standby current: <100μA.
Supply current 12V / 24V without PoE: <460mA / <230mA.
Supply current 12V / 24V with 2x PoE: <1.9A / <950mA.

7 Input 3 - purple Digital switching level approx 4.6V (raising) and 2.0V (falling).
Analog measure interval: 0 ... 6.6V.
Input impedance: 94kΩ.

8 Output - green Switches to Vin. Guaranteed current of at least 1.8A.

Table 2: Pin configuration of the GPIO connection

When operation in a vehicle, the AnyRover can switch off automatically when the ignition line is low. This

way, the car battery can be protected. As soon as the ignition line raises above 4.6V again, the AnyRover

is switched back on.

3.2.3 DR inputs (only for dead reckoning variants)
Assembled cables are available, for specific requirements, these components can be
used:

Manufacturer / series Molex / MicroFit 3.0
connector housing: 43025-0400
crimp connections: 43030-0009
crimp tool: 63811-2800
contacts ejection tool: 11-03-0043

Dead reckoning GPS combines pure satellite navigation with a gyroscope, the
tachometer and an indicator signal for forward / backward motion. This way, position
finding can be continued even if no satellites are visible, e.g. in tunnels.

Certain preconditions must be met in order for dead reckoning to work reliably. The
device orientation (see Error: Reference source not found) as well as voltage levels,
polarities and signal properties must be correct. Otherwise, the results may, in certain
cases, be worse than without dead reckoning.

The system works best if the tachometer impulse is taken from the rear axle, and the GPS
antenna is positioned above the rear axle as well. The source of the tachometer impulse
may not be changed with reasonable effort, but with a good placement of the antenna,
a lot can be gained, especially in long vehicles.

Special care has to be taken for vehicles containing a trip recorder. Because this device
is calibrated, signals are often taken from there or from a trip recorder simulator (e.g.

AnyRover
:
16 November 2020
page 12 / 120

Siemens/VDO „TSU 1391“). It is possible that these devices deliver individual pulses even if
the vehicle is stationary which renders the measurements of the dead reckoning system
completely unusable.

The tachometer signal must be proportional to the cruising speed – even if the vehicle is
stationary, e.g. it must not deliver any impulses to the AnyRover in this case. Additionally,
the signal must reach certain voltage levels during the impulse to be recognized by the
AnyRover. These levels are 4.6V (low to high) and 2.0V (high to low). To be on the safe
side, try to obtain the pulses directly from the pulse generator, if the necessary levels are
reached.

The pin assignment of the DR connector is given in Figure 4: DR connector with pin
assignment and Table 3: Pin assignment of the DR connector.

Figure 4: DR connector with pin assignment

Pin
number

Function Pin DIN 72552 Wire
color

Remarks

1 GND 31 black Connected to gnd, use if required.

2 GND 31 green Connected to gnd, use if required.

3 Speed Tick /
tacho signal

- white High level: +4.75 V bis +30 V
Low level: -30 V bis +1.5V
Impulse: 1 impulse/meter up to 50 impulses/meter
Input impedance at least10kΩ.

4 Forward /
Reverse

- red High level: +4.75 V bis +30 V
Low level: -30 V bis +1.5V

Table 3: Pin assignment of the DR connector

The forward/reverse signal must be a switched voltage of the reversing light. 12V or 24V
corresponds to reverse cruise, and 0V to forward cruise. If the signal is inverted, it can be
changed in the software configuration.

The AnyRover only draws at most 2mA@24V and 1mA@12V vehicles. There are no known
devices that cannot provide this current.

Important: After installation, the GPS calibration has to be reset and a calibration drive
has to be performed! See chapter Error: Reference source not found

AnyRover
:
16 November 2020
page 13 / 120

3.2.4 Serial ports (optional)
Serial1 and Serial2 are the serial ports according to EIA/RS232. When used as normal
COM ports both ports support all common baud rates up to 115200 Bits/s.

Serial1 is without HW-Handshake. It can get the GPS data directly from the GPS receiver
with baud rate 57600 8N1 (activation in cablynx.conf).

Serial2 has a HW-Handshake by RTS/CTS.

The following table displays the configuration of the COM ports:

Pin Serial1 function Serial2 function

1 NC NC

2 RxD (Device → AnyRover) RxD (Device → AnyRover)

3 TxD (AnyRover → Device), GPS TxD TxD (AnyRover → Device)

4 NC NC

5 Gnd Gnd

6 NC NC

7 NC (GPIO, ask if used) RTS (AnyRover → Device)

8 NC (GPIO, ask if used) CTS (Device → AnyRover)

9 NC NC

Table 4: COM ports pin configuration

3.2.5 DIP Switch
The eight switch at the back of the device are made to make various configurations
around the dead reckoning function. Switch up means OFF, switch down means ON.

21 3 4 5

6 7 8 9

AnyRover
:
16 November 2020
page 14 / 120

Switch Function Resulting mode

1 & 2 Mounting Orientation See chapter Vehicle Integration

3 Disable Dead Reckoning Function OFF: DR is enabled
ON: DR is disabled

4 Invert Reward Signal OFF: high = reward, low = forward
ON: high = forward, low = reward

5 DR Pulse Filter OFF: Pulses <100 μm are getting filtered out
ON: Pulses <500 μm are getting filtered out

6

7 Input1 = Speedticks OFF: Input1 and Speedticks are separated
ON: Input1 is connected to Speedtick signal

8 Input 2 = Forward/Reward Signal OFF: Input2 and Fwd/Rwd signal are separated
ON: Input2 is connected to Fwd/Rwd signal

Tabelle 5: DIP Switch Settings

3.2.6 SIM card
The internal modem cannot create a connection without a SIM card. PIN protected SIM
cards are supported, the PIN code has to be saved in the configuration file. Different PIN
codes such as PIN2 or PUK are not supported. In case the SIM card requires one of those
codes, manual intervention is necessary, by either removing the SIM card and entering
the PIN using a mobile phone (recommended), or by entering the necessary commands
on the command line. The system logs this case in the system log file.

3.3 Internal connections

Usually, the AnyRover does not have to be opened, all necessary connections are
accessible from the outside. Some modifications require the device to be opened
though. Before opening, the device has to be shut down, and power supply has to be
disconnected.

To open the device, a philips screw driver is required.

3.3.1 MicroSD Card
The AnyRover can be supplied with a MicroSD card to extend hard disk space. To
replace a MicroSD card, the back cover has to be removed (where the power
connectors are).

3.3.2 Modem
The AnyRover can be operated with different modem types. To change the modem, the
top cover has to be removed. After inserting the modem, make sure to properly connect
the antenna cable to the modem to ensure good signal quality. The antenna cable must
be handled carefully and must not be bent.

The modem is a mini PCI express card in standard format (30x56mm). When using a

AnyRover
:
16 November 2020
page 15 / 120

supported modem, no software change is required after changing the modem.
Supported modems are Sierra Wireless MC7710 and MC8705.

The AnyRover does not support voice capabilities of the modems.

3.3.3 PoE
To change the PoE modules, the top cover has to be removed. The PoE modules are
placed behind the Ethernet ports. No software change is necessary after changing the
PoE configuration. To switch the PoE PSE modules on or off, a configuration change
might be necessary.

3.3.4 Wireless LAN
The AnyRover can be equipped with a wireless LAN card. The card is connected through
USB.

The default card is from DeLock (www.delock.de), with a Ralink chip set. The card
supports IEEE 802.11b/g/n and can be operated both as client and as access point.

The card is placed between the processor module and the back of the device, two
holes in the PCB are already present. The connection is established with a cable to the
internal USB connector right behind the external USB socket. For the WLAN antenna, a
hole is already spared in the front plate.

The card is attached on the main board with suitable screws and distance bolts. The
card must be placed high enough above the PCB to avoid any contact between the
components.

Other WLAN cards can also be used as long as they are connected via USB. With
different cards, a suitable attachment must be found, and possibly the driver manually
inserted into the system, if the card uses another chip set than Ralink RT73 or RT2800.

3.4 Vehicle integration

A properly planned and cleanly executed installation can prevent many problems later
on, therefore this should be given proper attention.

3.4.1 Installation location
The selection of the location in the vehicle where the AnyRover is installed can be
determined according to these factors:

Length of antenna cabling
Try hard to keep antenna cables as short as possible. For active GPS antennas, losses are
only encountered if cable attenuation reaches the range of antenna gain (depending
on antenna and cable this is the case for lengths of 10 to 20m). For passive GPS antennas

http://www.delock.de/

AnyRover
:
16 November 2020
page 16 / 120

and for all GSM, UMTS, and WLAN antennas, every meter of cable decreases range. For
large vehicles like passenger buses, placing the AnyRover above the windows and close
to the antenna is highly recommended.

Vibration, heat and dirt
All these factors diminish the live expectancy of the AnyRover. In vehicles, temperatures
in the range of 70°C can easily occur, even more in the engine compartment. For dead
reckoning devices, heavy vibrations can distort measurements of the gyroscope. An
installation in the engine compartment is therefore not recommended.

Accessibility of signal and supply pins
One or two supply voltages (switched and/or battery voltage), ground and – for dead
reckoning systems the tachometer impulse and reverse signal – are necessary for proper
installation of the AnyRover. Installation of the cabling can be time consuming and may
thus have an impact on installation.

Device orientation (non dead reckoning devices)
Basically, the AnyRover can be installed in any orientation, but it is better not to orient the
connectors towards the top, since dirt can then assemble in the connectors.

Figure 5: Possible device orientations for dead reckoning systems

Device orientation for dead reckoning systems

AnyRover
:
16 November 2020
page 17 / 120

The dead reckoning version of the AnyRover must be installed either lying horizontally or
standing on the side, i.e. the connectors are in any case facing horizontally out of the
AnyRover. Every degree of deviation from a horizontal or vertical position must be
avoided, since it has a negative impact on position calculation when GPS reception is
not available. The driving direction with respect to device orientation is irrelevant, since
only the orientation of the rotation axis must be correct for the gyroscope to measure
rotation.

After the device orientation is chosen, the DIP Switch has to be configured to adjust the
necessary signals.

3.4.2 Antenna installation
Several problems with localization and disposition systems can be traced back to
unsuitable antenna installation locations. Individual wrong position calculations that are
off by several hundred meters up to several kilometres occur with every GPS receiver, but
are usually filtered in the system. Even so, good signal reception is essential for good
precision and should be treated accordingly.

Basically, a good antenna position and quality is one of the most important factors for
successful operation.

Cabling
Cables must not be bent to a smaller radius than 20mm. Also, they must not be able to
chafe anywhere even if there are movable parts involved (e.g. trunk lid).

Mounting of SMA connectors: Pushing the cable slightly into the socket eases tightening
the nut. The maximal moment for tightening the nuts is 0.2Nm, which corresponds to a
force of 1.5N or 150g on a 12cm wrench.

Installation locations
The more visibility the antenna has towards the sky above the better GPS reception will
be. The signal will pass unimpeded through uncoated glass and most plastic materials,
but not through metal sheets.

AnyRover
:
16 November 2020
page 18 / 120

Figure 6: Possible mounting points for GPS antenna

3.4.3 Set installation position and backup signal
For the dead reckoning function, the measure axis and the rotation direction of the
gyroscope have to fit the installation position of the AnyRover. Furthermore the polarity of
the backup signal has to be set, so the AnyRover can distinguish between driving
forwards and backwards. To do this the following procedure has to be completed:

Preparation

1. Install AnyRover and provide it with voltage. The device has to be booted (about 15
seconds after the Power-LED started blinking)

2. Place vehicle in a horizontal position.

3. Ignition has to be turned on.

4. Do NOT go into reverse (backup light must not shine)

Do settings

5. Set DIP Switch as followed:

AnyRover
:
16 November 2020
page 19 / 120

Figure 7: Configuration of the device orientation

Position DIP Switch 1 DIP Switch 2

Position1 ON OFF

Position2 OFF OFF

Position3 ON ON

Position 4 OFF ON

Table 6: DIP Switch orientation calibration

6. Reboot AnyRover

3.4.4 Calibration drive
After installation, dead reckoning GPS needs to be reset and calibrated with a short drive
to measure tachometer impulses and gyroscope sensibility. This drive must contain:

• Five minutes of waiting under free sky with AnyRover switched on. The GPS LED on
the front panel must be blinking after no more than one minute. Without good
reception (no blinking LED) for at least three minutes, there is no sense in making
the drive. Better to wait some more or move the vehicle to a point with better
reception.

AnyRover
:
16 November 2020
page 20 / 120

Hint: In Europe, the constellation of GPS satellites is not optimal in the afternoon. If
visibility towards south is poor, finding a GPS position between 2pm and 5:30pm can be
tedious. This is not because of bad signal strength, but because the few visible satellites
are often arranged in a line which renders a 3D position calculation nearly impossible.
On open spaces though there are no problems.

• A short drive of 500-1000m as straight as possible, followed by a curve of more
than 90 degrees, and again a straight stretch of 500-1000m. A straight road with a
roundabout that is circumvented one and a half times before driving back has
proven to be a good solution.

Background: On a straight stretch, the geographic direction can be accurately
measured and the way driven corresponds to the GPS way. The first stretch is used to
calibrate the speed tick scale factor. The curve is then used to measure rotation angle,
which is compared to the return track to calibrate gyroscope scale factor.

Finally, the system is calibrated, and the data is saved in the AnyRover automatically.

3.5 Dimensional drawing

AnyRover
:
16 November 2020
page 21 / 120

AnyRover
:
16 November 2020
page 22 / 120

4 Configuration

The AnyRover can be configured on the command line.

Console access is possible over the local net and over the UMTS link. By default, ssh
access is allowed on all interfaces, while telnet is restricted to the local net.

A user config (password: cabtronix) is present for configuration changes. This user has a
limited command set available.

Further changes in the system can be done as user root (password: root). It is possible to
log in as root using ssh. To copy files back and forth, scp can be used.

Security warning: Change the passwords for both users. The command passwd on the
command line achieves this.

Security warning: The root user is the standard linux administrator accout, without any
securities implemented. It is possible to ruin the system if not working carefully. Users with
little to no experience on Linux should not use the root user (except for changing
password).

4.1 System configuration

The system configuration is stored in the file /etc/cablynx.conf. The file is a text file that
consists of different sections. Every section contains the parameters for a certain service.

A section starts with the name in brackets ([section]), and ends at the start of the next
section (or the end of the file).

Configuration entries are simple attribute value pairs (AVP) of the form

attribute = value

The equal sign (=) can be surrounded by spaces. Every AVP is on its own line. Empty lines
are ignored.

The configuration file can contain comments. All text after a hash character (#) up to
the end of line is considered as comment and is ignored. The only exception is the
[chat_script] section, where the hash sign has to be in column one to start a comment
(the command for dialling is 'atd*99#').

AnyRover
:
16 November 2020
page 23 / 120

By default, the configuration file provides extensive comments for all attributes.

4.1.1 Changing the configuration on the command line
The user config can change the configuration by issuing the command

edit config

This command starts an editor with the configuration file. After saving and quitting the
editor, the system is immediately updated. If you are logged in through the local network
and change the IP address, you will lose connection.

When changing the UMTS configuration, the current 3G-connection is terminated and
then created again. All connections on this link are terminated.

There are two editors on the system: vi and nano. With the command

edit

the user can find out which of them is set as default.

Hint: If you have never worked with vi before, use nano. To quit vi (without saving), the
command :q! (colon – q – exclamation mark – enter) is used.

4.1.2 Changing the configuration with a memory stick
There is a possibility to change the configuration using a memory stick. A complete
configuration file with the name cablynx.conf has to be placed on the memory stick in
the root directory. With the following procedure, this file is copied over the current
configuration.

When the AnyRover finds a file called /etc/reset during boot, it searches an attached
memory stick for a configuration file. If it finds one, it replaces the current configuration
with the new one and restarts all services. The memory stick is immediately unmounted
again to be removed, and the file /etc/reset is deleted.

By default, there is a command in the [gpio] section called

button = 5, touch /etc/reset && sync && /sbin/reboot -d 4

If the reset button is held for more than 5 seconds, the AnyRover creates the file
/etc/reset and reboots, thereby searching for a configuration on an attached memory
stick.

4.1.3 Changing the configuration using SMS
It is possible to configure the AnyRover using SMS messages. By default, the access
through SMS is disabled. There are three entries in the [sms] section that define access:

[sms]

AnyRover
:
16 November 2020
page 24 / 120

console = no
console_key = abc123
eco_% = /etc/conf.s/eco.sh $@

There are two ways to disable access. Using console=no, it can be enabled with an SMS
containing the console_key. If the console_key is set to '-', access cannot be enabled
using SMS.

The SMS to enable access must contain the text „eco enable abc123“ with the correct
console_key. The system will then modify the configuration file to read console=yes, and
SMS access is open. Sending „eco disable“ changes the entry back to console=no. If the
console_key is set to '-' before disabling access, it cannot be enabled any more using
SMS (suicide method).

The SMS console understands these commands. The SMS must start with the command
and not contain capital letters.

Command Arguments Effect

eco enable Password Enable the SMS console

eco disable - Disable the SMS console

eco conf Section[:name]
attr[+|-]=val

Change configuration

eco list Section1 [section2] Returns the requested section with an SMS to
the sender (without comments)

eco reload Restarts all services

eco reset Resets config to factory default

eco templ Name Changes configuration to the named one

eco save Name Saves current config as name

The command eco conf has this syntax:

conf section[:name] attribute[+|-]=value

One SMS can contain several AVP. The first AVP must be preceded by a section name,
further AVP for the same section can be added, separated by space. It is also possible to
change to a different section by inserting a new section name. All words without an
equal sign (=) are considered to be section names, all words with an equal sign to be
AVP.

An AVP must not contain spaces. In the value part, all underscores (_) are changed into
spaces (but not in the attribute part).

The assignment operator defines the action to be taken with the AVP. If the operator is
just an equal sign (=), the existing AVP is replaced with the new one. If there is no such
AVP, the entry is discarded. To add new AVPs, use the operator '+=', to remove entries,

AnyRover
:
16 November 2020
page 25 / 120

the operator '-=' is used.

When changing an attribute, the first match in the configuration is taken. If there are
several AVP with the same attribute (e.g. in the firewall section the attribute accept), to
replace another than the first one, it has to be removed using the '-=' operator, and then
inserted again using the '+=' operator. Both these commands can be sent in the same
SMS.

Newly inserted AVP always appear at the beginning of a section, or after a name
attribute if there is one. If several AVP have to be inserted where the order is important
(e.g. for the firewall rules), the last one has to be inserted first.

To delete an AVP, both the attribute and the value must match exactly.

Example: This SMS changes the IP address to 192.168.1.3, inserts a new firewall rule
(accept = eth0,tcp,80) and deletes a rule accept=,udp,67 if it exists.

config system ipaddr=192.168.1.3 firewall accept+=eth0,tcp,80 accept-=,udp,67

When changing the configuration with SMS, the system is not updated automatically. To
achieve this, use the command eco reload.

Security warning: The AnyRover can be completely reconfigured with this method. Be
careful with this feature, and disable it if its not needed.

4.1.4 Querying the configuration using SMS
The command eco list followed by the list of requested sections returns the current
configuration via SMS. Note that an SMS can only be 160 bytes long. If the command
produces more output, only the first 160 bytes are returned, the rest is discarded.

When sending a command in the form

eco list firewall

to the AnyRover, the corresponding section is returned without any comments. When
several sections are specified, the AnyRover returns them all. When no section is given,
the complete configuration is sent.

4.1.5 Reset the configuration
The command eco reset resets the configuration to factory defaults.

The directory /etc/conf.d/ can contain different configuration templates which can be
loaded using the SMS command

eco templ NAME

Note that the current configuration is overwritten.

AnyRover
:
16 November 2020
page 26 / 120

4.1.6 Saving configuration templates
To save the current configuration as a template in the directory /etc/conf.d/ this
command is used

eco save NAME

4.2 Sections

All sections in the configuration file are described in this section.

The order of the sections in the configuration file is irrelevant, with these exceptions:

– [chat_script] must appear after [ppp]

– [certificate] must appear after [ipsec] or [openvpn], depending on which section
references the certificates

Section Description

system Defines the IP address and netmask of the local network, the hostname of the system
and static routes. Proxy ARP can also be enabled here.

switch Defines the configuration of the switch (enable, VLAN)

time Information on system time and NTP server

watchdog Configuration of the watchdog

crontab Configuration of crontabs. They are used to start programs at certain times.

gpio Defines actions to be taken when events occur on the GPIO pins. This includes the reset
and mode buttons on the front panel.

gps Configuration of the GPS daemon. The daemon can send GPS data (NMEA strings)
over TCP and UDP to other hosts (actively and passively).

sms Configuration of SMS access. Defines what the AnyRover does with inbount SMS.

modem The PIN code for the SIM card is stored in this section.

usb Configures the USB port. Enables supply voltage on the port and defines actions for
memory sticks.

dhcp Configuration for the DHCP server.

ftp Configuration for the FTP server.

tftp Configuration for the TFTP server.

firewall Firewall configuration.

dyndns Configuration of DynDNS hostnames.

ppp Configuration of the UMTS connection, including login and password for access.

chat_script The chat script prepares the modem and dials the provider.

ipsec Configure IPsec connections

certificate This section stores certificates for IPsec connections.

openvpn Configuration for OpenVPN server and client.

certificate This section stores certificates for OpenVPN connections.

tunnel This section defines IP-in-IP and GRE tunnels.

bridge This section defines ethernet bridges.

AnyRover
:
16 November 2020
page 27 / 120

banner Message of the day. This message is shown on login.

daemons Defines user applications that are started automatically.

script This section can contain arbitrary scripts

webserver Configuration of the web server.

wlan Configuration for a WLAN card, if present.

authentication Defines EAP or RADIUS server, e.g. for a WLAN AP.

certificate This section stores the certificates for the authentication service.

ospf Open Shortes Path First (OSPF) routing protocol.

snmp Simple Network Management Protocol (SNMP).

serports Configuration for the serial ports

openconnect Configuration for Cisco AnyConnect VPN

mobileip Configuration for MobileIP VPN.

scep Configuration for SCEP (Simple Certificate Enrollment Protocol) certificate
management.

pelix Configuration of position data transmission to Pelix server.

dsl Configuration of the optional dsl modem.

4.2.1 [system]

Attribute Value (Default) Description

ipaddr 192.168.1.3/24 IP address and netmask or prefix of the local interface. The
address can be given as 192.168.1.3/24 or 192.168.1.3
255.255.255.0. Using the parameter mtu:1492, the MTU of the
interface can be set.
To dynamically configure the interface, dhcp can be
configured. If the value is “dhcp default”, the dhcp client will
also set the default route.
More possible parameters after dhcp:
metric:M sets the metric of the route (default: 0)
timeout:T sets the timeout to T seconds (default: 30)
dns: Queries the DHCP server for DNS server addresses, and
replaces current DNS configuration
hostname: queries the DHCP server for a hostname,and
replaces the hostname if it is localhost.
nolinklocal: do not use link local addresses (169.254.X.Y)

ipaddr_wan The optional fifth ethernet port can be configured with this
parameter. The syntax is the same as for ipaddr above.

loopback Address that is assigned to the loopback interface. This attribute
can be present multiple times.

gateway IP address of the default gateway. Dynamically configured
interfaces (dhcp) can set the default gateway, so this option is
only used if the default gateway is on a statically configured
interface.

policy Rule for policy based routing.
policy = SELECTOR ACTION
where SELECTOR is one of
from PREFIX, to PREFIX, tos TOS, dev DEVICE
and ACTION can be
table NUM, prohibit, reject, unreachable

AnyRover
:
16 November 2020
page 28 / 120

Example:
policy = from 1.2.3.4 table 200

static_route Configure static routes.
Format:
[target][/prefix] [netmask] gateway [metric:M] [table:T] [src:S]
If both prefix and netmask are omitted, the default class-based
prefix is chosen; if both are present, the prefix is ignored.
If no target is given, the default route is set. gateway can either
be an IP address or the name of an interface.
A gateway IP address must already be reachable with the
existing routing table, an interface must exist.
table:T assings the route to the routing table T as created with
the policy option above.
With src:S the source address for this route can be set.

proxy_arp Space separated list of interfaces that have proxy ARP enabled.

hostname cablynx Host name of the system. The hostname can be set by a DHCP
client if it is set to localhost here.

nameserver Defines a name server for the system. This parameter can
appear multiple times to define up to 3 name servers. Additional
entries are ignored.
The first two entries are also used by IPsec to hand out to clients
doing a mode config request (e.g. Cisco VPN Client).

winsserver Up to two WINS server can be specified that are handed out by
IPsec to mode config clients. These servers can only be set
globally for all IPsec connections, not per connection.

log_server 192.168.3.2 When given, all log messages are sent to this log server

log_level All messges with a log level less than this value are written to the
log file /var/log/messages. By default, everything is written to
the log file.

log_file /var/log/messages Name of the log file. The default log file lies on a RAM disk and is
lost upon reboot. This parameter allow s to specify a different
log file. If no path is given, the file is placed in /var/log. If the
given path does not exist, it is created.

log_rotate_size 200 The log file is rotated automatically whenever it reaches a
certain size. This parameter defines that size in KB.

log_rotate_files 1 When the log file is rotated, older files are deleted.
This number defines how many rotated files to keep (max 99).

tftp_server 192.168.3.2 Default entry for the command update system

Partition Define more partitions to be mounted upon start.
Syntax:
partition = device, filesystem, mountpoint [, option [,option]]
The mount point will be created if not already present.
Options as known from /etc/fstab. Option noatime is set by
default.
Possible options: rw (default), ro, [no]exec, …
Example:
partition = /dev/mtdblock4, jffs2, /media/log, noexec

4.2.2 [switch]

Attribute Value (Default) Description

AnyRover
:
16 November 2020
page 29 / 120

start yes If set to yes, the switch is switched on. Otherwise, access over
the network is not possible.
During boot, the switch is only enabled after the firewall has
been set up.

poe1 no If set, the PoE PSE module on ethernet port 1 is switched on. Has
no effect on a PD module.

poe2 no If set, the PoE PSE module on ethernet port 3 is switched on. Has
no effect on a PD module.

ports 4,4,4,4 Switch port configuration. Every port is configured by one
number, separated by commas. Omitted values are assumed to
be 4. The values mean:
0: 10 Mbit, half duplex
1: 10 Mbit, full duplex
2: 100 Mbit, half duplex
3: 100 Mbit, full duplex
4: auto negotiation

start_vlan no VLANs are only activated if enabled here. This causes the ip
address from the [system] section to be assigned to VLAN 0. This
VLAN 0 contains all ports that are not explicitely assigned to
another VLAN.

port_disable List of switch ports that are to be disabled (comma separated,
ports number 1 to 4).
This only works if start_vlan is set to yes.
Example: port_disable = 3, 4

vlanX - This parameter defines one VLAN by listing the numbers of the
ports that belong to this VLAN separated by commas. X can
take a value from 1 to 4.
vlan1 = 1,2

ipaddrX - The IP address and netmask or prefix of the interface in VLAN X
on the AnyRover is defined here.
ipaddr1 = 192.168.1.1/24
ipaddr2 = 192.168.2.1 255.255.255.248
Further values are identical to the parameter ipaddr in the
system section.
Interfaces with X=1..4 can be used for internal vlans, interfaces
with X>4 can only communicate through an external trunk.
At most 16 interfaces can be configured.

trunk Using this parameter, external VLAN trunks can be configured
on the switch ports. The parameter expects number of the
switch port that is to be configured as trunk. This parameter can
appear multiple times.
Example: trunk = 3
If the trunk port is included in a vlanX parameter, that port can
directly communicate through the trunk, otherwise the packets
have to be routed by the AnyRover.

dhcp_rebind no If set to yes, DHCP clients will execute a rebind if a cable is
plugged on the corresponding switch port.

power 49 Internal signal. Number of the switch power pin.

reset 50 Internal signal. Number of the switch reset pin.

ps1 123 Internal signal. Number of the switch config enable pin.

port_poe1 53 Internal signal. Number of the PoE module 1 power pin.

port_poe2 54 Internal signal. Number of the PoE module 2 power pin.

ethled1 1117 Internal signal. Needed for dhcp_rebind.

ethled2 1118 Internal signal. Needed for dhcp_rebind.

AnyRover
:
16 November 2020
page 30 / 120

ethled3 1119 Internal signal. Needed for dhcp_rebind.

ethled4 1120 Internal signal. Needed for dhcp_rebind.

4.2.3 [time]

Attribute Value (Default) Description

timezone UTC Timezone information
The value is one of the entries in /etc/timezones (first column).
Some possible values are:
CET, GMT (incl. Daylight saving time), UTC (no daylight saving
time), EET, EST, …
Alternatively, specify exact location, e.g. Europe/Zurich,
America/Vancouver, Pacific/Auckland, ...

start yes If set to yes, a NTP server is run on the system. Don't forget to
enable port 123 UDP in the firewall.

time_source gps gps: system time is set after the GPS receiver
ntp: system time is set after a NTP server
none: system time is not set

ntp_server pool.ntp.org Name or address of NTP server. Only used if time_source=ntp

ntp_flags List of flags to restrict the service of the ntp server. The flags are
entered into ntp.conf in a line like “restrict default <flags>”.
Possible flags: kod, limited, lowpriotrap, nomodify, noquery,
nopeer, noserve, notrap, notrust, ntpport, version
The list can be comma or space separated. Documentation of
the flags can be found in the ntp.conf man page:
http://www.google.com/?#q=man+ntp.conf
Recommended value:
ntp_flags = kod nomodify notrap nopeer noquery
Without flags, the ntp service can be used for Denial of Service
attacks on other hosts: sending an NTP-query to the server
generates an answer that is much larger; couple that with a
faked source IP address, and the answer will be sent to the
target host.

jump_clock NTP daemon normally adjusts the clock one after startup if the
difference is less than 1000s. Otherwise, it exits with an error
message.
If this parameter is set to yes, it sets the clock on startup no
matter the difference, and continues to keep the time current.

modemclock Yes check system clock with modem time. When there is a 3G
connection, the system clock is checked automatically from the
modem time every time, the connections is established.

4.2.4 [watchdog]

Attribute Value (Default) Description

start yes The watchdog resets the sysetm if the feed line has not
changed in about 1 minute. This attribute starts the watchdog.

http://www.google.com/?#q=man+ntp.conf

AnyRover
:
16 November 2020
page 31 / 120

The system automatically feeds the watchdog when enabled.

interval 15 Interval in seconds for changing the watchdog line. The
watchdog triggers after about 45-75 seconds. Keep below 30.

gpio_on 122 Internal signal. Number of watchdog enable pin.

gpio_feed 124 Internal signal. Number of watchdog feed pin.

cmd_on 1 Internal signal.

4.2.5 [crontab]

Attribute Value (Default) Description

start no If set to yes, cron daemon is started and the following entries
entered into the crontab.
The cron daemon can be started by other services, even if this
value is set to no. But then, the following entries are not inserted
into the crontab.

loglevel Define the amount of logging of the cron daemon.
Possible values (lower values include log messages of higher
values):
8: Write a log message for every command executed
9: Only warnings and errors
Default-value: 8

entry Crontab entry. This line is copied directly to the crontab file, so
the crontab syntax applies.

4.2.6 [gpio]
This section defines different actions to be taken when events occur on the GPIO lines.
An action definition has the form

time, action

If time is present, the action is delayed for time seconds. Precision is only in the range of
one second.

The action can be any command or program including arguments (the whole action is
passed to the command „sh -c“).

There are some predefined action that can also be used in the [sms] section.

Action Description

OFF The system is shut down. This only works if the system is supplied through the GPIO
connector, and the ignition line is low.
The system starts again when the ignition line goes high.

CANCEL Cancels a running OFF action.
The use of these two is basically limited to
ignition = (CANCEL), (60, OFF)

RESET Resets the configuration to factory defaults. The current configuration is not saved.

REBOOT Restart the system.

AnyRover
:
16 November 2020
page 32 / 120

HALT Shut down. If not switched of afterwards, will eventually reboot because of watchdog.

MOUNT Mount all USB storage devices.

UMOUNT Unmount all USB storage devices.

OUT_ON Switch on GPO pin (set to high).

OUT_OFF Switch off GPO pin (set to low).

SMS_STATUS Send information about the GPI pins as SMS back to the sender. Only works in the [sms]
section.

The attributes in the [gpio] section are

Attribute Value (Default) Description

button 2, RESET
5, UMOUNT
10, REBOOT

Action to be taken if the reset button has been pressed for more
than the indicated time (in seconds). The number of actions is
not limited, but they all must have a different time value.

mode Action for the mode button.

ignition (CANCEL), (60, OFF) Action to be taken when the ignition line changes. The first
action is taken on the positive edge, the second on the
negative.

ign_boot 0 Defines what is assumed about the ignition signal upon boot.
Depending on this value and the current state of the ignition
signal, an edge is immediately detected.
Possible values:
0 (or unset): read current value upon start
1: assume that ignition was off during boot
2: assume that ignition was on during boot

inputX (),() Action to be taken when the inputX line changes. The first
action is taken on the positive edge, the second on the
negative.
The AnyRover has 3 inputs.

gpio_ign 46 Internal signal.

gpio_in1 30 Internal signal.

gpio_in2 29 Internal signal.

gpio_in3 28 Internal signal.

gpio_off 126 Internal signal.

gpio_mode 41 Internal signal.

gpio_power 58 Internal signal.

gpio_status 87 Internal signal.

4.2.7 [gps]
TCP and UDP connections to send GPS data (NMEA strings) through are configured in this
section. There can be any number of connections, the GPS data is sent to all targets.

Active connections are defined with tcp_target and udp_target. The AnyRover tries to
set up the connection (which always succeeds for a UDP connection if a route to the
target is available). The line looks like this:

AnyRover
:
16 November 2020
page 33 / 120

ret,target[:port][,[source[:port]|interface[:port]]

Field Description

ret Defines the state of the reverse connection.
ret = 0: data in reverse direction is silently dropped.
ret = 1: it is possible to send data in reverse direction to the GPS reciever (e.g. with the
u-center software from u-blox: www.u-blox.ch)
ret = 2: commands on the reverse direction in the form CBCTL:{COMMAND} are
interpreted, where command is a valid command for cablynxctrl (e.g. CBCTL:ekfreset).
Output from the commands is sent over the link again as GPTXT string with the tag
CBCTL.
ret = 3: ret = 1 and ret = 2

target IP addres or host name of the target. When using host names, make sure they can be
properly resolved (e.g. via DNS).

port Port number of the target. If no port is given port 13179 is used.

source Source IP address for the traffic. The AnyRover must have an interface with this IP
address. If not given, the system uses the address of the interface that the packets
leave the system.
Can be used if the packets have to be sent through an IPsec tunnel.

port Source port for the traffic. Can be interesting if there are firewalls between the
AnyRover and the target.

interface Network interface that will be used as source for the packets. Possible interfaces are
ppp (the modem) and eth0 (ethernet). Can be used if the packets have to be sent
through an IPsec tunnel.

For passive connections, the attributes tcp_server and udp_server are used. In this case,
the AnyRover waits for incoming connections and starts sending data as soon as the
connection is established. The fields are the same as above. Currently, udp_server
doesn't work yet. Syntax:

ret[,source[:port]|interface[:port]]

serial_target defines a serial interface that is used to send data. Syntax:

ret,serport[,baudrate]

Field Description

ret If ret = 1, then data can send in the opposite direction to the GPS receiver (i.e. with the
u-center software by u-blox: www.u-blox.ch).
If ret = 0, return traffic is silently dropped.

serport Name of the serial port, e.g. /dev/ttyS1 for the first serial port, /dev/usbser0 for a USB-
serial converter.

baudrate Baudrate of the transmission.
Possible values are 2400, 4800, 9600, 19200, 38400, 57600, 115200

With file_target, data can be written to a file. The file is automatically rotated an
gzipped, if a defined size is reached. Old zip files are deleted. Syntax:

ret,file[,maxsize[,rotate[,hook]]]

AnyRover
:
16 November 2020
page 34 / 120

Field Description

ret For file_target, the parameter ret is ignored.

file Name of the file to write data to. When rotating, the suffix “.XX” is appended, and the
file gzipped, which results in files named [file].01.gz.
If the files are written to the root partition, the size is limited to 10MB and one old file
(rotate = 1), to prevent the partition from filling up.

maxsize The file is rotated if it becomes larger than maxsize (in bytes). The size is periodically
checked, so the exact size when rotation occurs cannot be predicted.
Possible values: 1 – 2'147'483'647 (=2GB)
Default value: 4MB

rotate Defines how many old files are kept. Rotated files are saved as [file].01.gz, [file].02.gz,
[file].03.gz etc. where [file].01.gz is the youngest file. The oldest file is deleted when
maximal number is reached.
Possible values: 0 – 99
Default value: 5

hook Define a program that is executed whenever the file is rotated. In this case, the file is
not gzipped.
The program gets the name of the rotated file as parameter.

Attributes for the [gps] section are

Attribute Value (Default) Description

start yes If set to yes, the GPS receiver is switched on

run_gpsd no If set to yes, the gpsd service is started

gpsd_port 2947 TCP listen port for gpsd. Must be enabled in the [firewall]
section.

gpsd_debug 0 Log level of gpsd. The higher the number the more messages
gpsd sends to the system log. Level 2 already logs all NMEA
messages.

assist_now AssistNow is a service which provides current satellite data
online that allow the receiver to acquire a position only seconds
after power on. The data are valid only for a short time (a
couple of days), so make sure that current data is available.
If a file name is given here, the file is loaded into the GPS
receiver upon system boot.
AssistNow data can also be loaded into the GPS reciever later
using the program cablynxctrl.

udp_target Target for active UDP connection. See above.

tcp_target Target for active TCP connection. See above.

tcp_server Configuration for passive TCP server. See above.

udp_server Configuration for passive UDP server. See above.

serial_target Configuration for a serial interface

file_target Writes data into a file.

tcp_init_str This string is sent without modifications as the first message on
ever TCP connection established.

gptxt Configuration of GPTXT messages. Syntax:
gptxt = interval, action
Every interval seconds the action is executed, and the output
sent in a GPTXT message. Internal actions:
GPI: send state of all the inputs:
GPTXT,GPI,A,B,#1,V1,#2,V2,#3,V3*XX

AnyRover
:
16 November 2020
page 35 / 120

A: ignition, B: reset button
#1: number of GPI pin, V1: value of GPI pin
XX: checksum (xor of all bytes between $ and *).
WLAN: List of currently visible WLAN access points. This only works
if the WLAN card is configured as client and running. Format:
$GPTXT,WLAN,<ssid>,<mac>,<channel_freq>,<signal>*
DIP: position of the DIP switches 1-6. Format:
$GPTXT,DIP,0,0,0,1,0,0*3f
Alternatively, some executable (including path) can be
specified, which is run and its standard output is sent in the
GPTXT message. If the output contains newline characters or is
longer than 70 bytes, the text will be split into multiple GPTXT
messages.

gptxt_file Write the last GPTXT messages to this file. The directory must
exist.
Recommended: /var/gps/gptxt.txt
The first field of the GPTXT message is used as key, and for every
key only one message is stored. E.g.
$GPTXT,INFO,Hello world*
Here, the key is INFO. The next message with GPTXT,INFO will
overwrite this one.

gptxt_writeout Write the file every n seconds. Set to 0 to disable this feature.

gptxt_clean Remove GPTXT messages older than n seconds. They will be
reinserted if they reappear.

directory /var/gps Directory for fifos where the NMEA strings are made available to
local programs.
The fifos should not be read using cat (will never terminate), but
with 'head -n 1 fifo'.

gps_bypass no Enable or disable the gps bypass.
The gps bypass can send data directly to the external serial
port. This can be achieved as well by adding a serial target, but
the bypass is faster. To enable the gps bypass the serial ports
have to be enabled in the serports section.

device /dev/ttyS2 Internal signal. Serial interface where the GPS receiver is
connected to.

baudrate 9600 Internal signal. Baud rate of GPS receiver. Changing this
parameter will NOT reconfigure the GPS receiver.

gps_reset 38 Internal signal. Number of GPS receiver reset pin.

gps_on 125 Internal signal. Number of GPS receiver power pin.

angle 30 Maximal deviation angle from a valid position of the AnyRover
to use the dead reckoning function.

4.2.8 [sms]

Attribute Value(Default) Description

start yes If set to yes, the AnyRover will check for incoming SMS.

key f4fa7231c01.... Hex value of 32 byte hash key.

key_file /etc/key File that contains hash key. Key entry precedes over key_file.

phone_number List of phone numbers that are allowed to send SMS commands.
If the list is empty, all SMS are accepted.
Example: phone_number = +41790123456, +41760987654

AnyRover
:
16 November 2020
page 36 / 120

interval 15 Interval in seconds for SMS checks.

console no Defines whether the command eco_% is enabled.

console_key - If the SMS console is disabled, it can be enabled with an SMS
“eco enable KEY”. If the key is set to “-”, the console cannot be
enabled via SMS.

send_answer_back If set to yes, the first 160 bytes of the output of the command are
sent back to the sender of the SMS.

send_answer_to List of phone numbers where the output of the command (160
bytes) is sent to, independent of the value of
send_answer_back.

catch_all Define a command to be executed when a SMS message
cannot be assigned to a user defined command. The program is
passed the phone numberr and the text of an SMS in two
environment variables $PHONE_NUMBER and $SMS_TEXT.

sender_as_text no If an sms is received from a defined sender like SWISSCOM,
 the sender id can be used as text or number. Default value is
 number.

The rest of the entries are commands that can be sent via SMS. The attribute is the
command (spaces in the SMS are replaced by underscores, the attribute must not
contain spaces). The value contains a flag and the command that is executed (using „sh
-c“).

The flag defines whether the command must be protected with a hash value. If the flag
is 0, the SMS doesn't need a hash, if the flag is 1, a valid hash must precede the
command (separated by '-'), and if the flag is 2, a correct 3 way handshake has to take
place prior to sending the command (not implemented yet).

Commands can contain parameters. The attribute must be marked with a trailing %; in
the value, the strings %1, %2, … %9 are replaced with the respective parameters from the
SMS. The string %@ designates all parameter values. If the command requires a '%'
character, it must be entered as '%%'.

Some examples:

ping_router 0, ping -q -c 4 `route | awk '/^def/{print $2}'` | awk
'BEGIN{a=0}/^---/{a=1;next}a'

Sends 4 ping packets to the
default gateway

ping_client 0, ping -q -c 4 `awk '/ List /{a=1;next}a{print $1;a=0}' <
/etc/hosts` | awk '/^---/{a=1}a'

Sends 4 ping packets to the first
DHCP client

position 1, head -n 1 /var/gpgga.fifo Returns the current GPS position

config_% 1, cp /etc/cablynx_templates/%1 /etc/cablynx.conf Copies /etc/cablynx_templates/
XXX to /etc/cablynx.conf
XXX is replaced with the first
word in the SMS after “config”.

eco_% 0, /etc/scripts.d/eco.sh %@ Some predefined actions

The predefined commands from the [gpio] section can also be used here.

AnyRover
:
16 November 2020
page 37 / 120

Security Warning: Commands without hash should not be able to change anything on
the AnyRover, since they can be sent from every mobile phone. Commands with hash
value are more secure, but the hash value is the same all the time. If someone captures
a command with hash, he can execute it as often as he wants.

4.2.9 [modem]

Attribute Value (Default) Description

name modem1 Identifies the modem if more than one are available (currently
not used)

band 3 Defines the radio band for the modem:
For 3G modems:
0 = Automatic
1 = UMTS 3G only
2 = GSM 2G only
3 = UMTS 3G preferred
4 = GSM 2G preferred
In 2G mode, the modem cannot receive SMS under load
For LTE modems:
0-2: identical to 3G modems
3, 4: Automatic
5: GSM and UMTS only
6: LTE only
7: GSM, UMTS, LTE
11, UMTS and LTE Only
12, GSM and LTE Only

disable_roaming No Disable roaming to foreign mobile networks. This function is
activated when the parameter is set to yes.

sim_pin PIN code for the SIM card.

imsi IMSI checker: Rules are defined on whether to start ppp
depending on the currently inserted SIM card, and start on
which interface.
To find out the IMSI of the currently inserted SIM card, issue on of
these commands:
 at at+cimi
 id2 /dev/clhip
The rules are evaluated in the order they appear in the config
file.
The rules have the form: <IMSI>, X (-1 <= X < 2147483648).
If the IMSI matches, ppp is started on interface pppX. If X is
negative, ppp is not started. The IMSI “-” matches any SIM card;
therefore it makes no sense to put further rules after one having
“-”, they are never tested.
Examples (with IMSI 228013520284438):
To start ppp only for one particular SIM card:
imsi = 228013520284438, 0
imsi = -, -1
To start ppp on ppp0 for one particular IMSI, and on ppp100 for
all others:
imsi = 228013520284438, 0
imsi = -, 100
To not start ppp for one particular IMSI, but for all others:
imsi = 228013520284438, -1
imsi = -, 0

wait_for_sim Whether to wait until SIM card is ready. Some SIM cards need

AnyRover
:
16 November 2020
page 38 / 120

some time after entering the PIN until they are ready.
Sometimes, the connection is started too quickly which results in
a failed connection attempt.
Should always be set to yes.

gpio 47 Internal signal. Number of modem power pin.

disable 48 Internal signal.

cmd_on 0 Internal signal. Command to switch modem on.

slot 0 Slot where the modem sits. For AnyRover always 0.

get_modem_status yes Get modem status informations and store them to a file

status_interval 60 Define how often modem status informations get collected. This
value must not be smaller than 20 seconds.

show_rx_led yes Show signal RX level on external LEDs.
When set to no, this command will not touch the external LEDs.
This may be needed if the LEDs are used to display something
else.

modem /dev/clmodem Internal signal.

hip /dev/clhip Internal signal.

ctrl /dev/clctrl Internal signal.

gps /dev/clgps Internal signal.

4.2.10 [usb]

Attribute Value (Default) Description

poweron yes If set to yes, the power line on the USB interface is switched on.
The internal WLAN card also requires this parameter to be set.

usb1 yes Switch on power on for external USB Port (connector for WLAN
module). To enable the port, poweron has to be set to yes.

usb2 yes Switch on power on for external USB Port (connector for WLAN
module). To enable the port, poweron has to be set to yes.

usb4 yes Switch on power on for external USB Port (connector on the
outside of the device). To enable the port, poweron has to be
set to yes.

switch_wlan no Using this parameter, the two WLAN modules wlan0 and wlan1
can be switched.

start_sdcard Switch on power of the SD-card.

automount yes If set to yes, USB memory sticks and SD-cards are mounted
automatically when connected.

ignore_errors If set to yes, VFAT filesystem errors on the SD-card are ignored. If
set to no, the SD-card will be remounted read-only upon errors.

sdpart Mount points for partitions on the SD card. This parameter can
appear multiple times, once for each partition to mount.
Partition numbers start at 1.
This parameter is only active if automount = yes.
Syntax: sdpart = PartNum, MountPoint
Example: sdpart = 1, /media/sdcard1

AnyRover
:
16 November 2020
page 39 / 120

4.2.11 [dhcp]
This section defines a DHCP server on one interface. If multiple servers on different
interfaces are needed, this section can be used several times.

The parameters are separated into 4 categories. First is the general information, after that
the bootp specific parameters follow (next_server, hostname, and boot_file). These
values are placed inside the DHCP/bootp packet. The rest contains many DHCP settings,
which are appended to the packet as options. Finally, there are entries for static leases.

Attribute Value(Default) Description

name - Name of the interface the DHCP server runs on.
Possibilities: eth0, vlan1 .. vlan4, wlan0

start yes If set to yes, the DHCP server is started.

lease_file Using this parameter, the location of the lease file in the file
system can be defined. Default location is
/var/lib/misc/udhcp.leases.<INTERFACE>
This file lies on a RAM disk and is lost after a reboot.

log If set to syslog, the DHCP server will log its actions to syslog.

port 67 UDP port to listen for DHCP requests on.

dhcpd_start 192.168.3.11 Lowest address of the range the server hands out.

dhcpd_end 192.168.3.254 Highest address of the range the server hands out.

next_server This IP address is placed in the next server field in the bootp
header.

server_hostname This name is announced as hostname of the server.

boot_file Name of the file the bootp client is using as boot file.

netmask Netmask of the dynamic range. If not set, defaults to the
netmask of the interface the service is running on.

router 192.168.1.3 Default router for the clients. This parameter can appear
multiple times to enable sending multiple router addresses. If set
to default, the IP address of the interface the server is running on
is sent.

dns 192.168.1.3 Name server the DHCP server hands out to clients. This
parameter can appear multiple times.

lease 864000 (10 days) Lease time in seconds

timezone Offset in seconds of local time to UTC. This can be used to
define local time zone.

*timesrv
*namesrv
*logsrv
*cookiesrv
*lprsrv
*nissrv
*ntpsrv
*wins
swapsrv
tftp

IP address for the named server. Entries marked with * can
appear multiple times to announce multiple servers.

hostname Hostname sent to the clients.

bootsize Size of the boot file, in 512 byte blocks.

domain Domain the clients should use for DNS queries. This parameter
can appear multiple times.

AnyRover
:
16 November 2020
page 40 / 120

rootpath Path to the root disk of the client.

ipttl TTL the client should use.

mtu MTU of the local network.

broadcast Broadcast address for the local network.

nisdomain NIS domain name.

requestip IP address

dhcptype Number

serverid IP address that will be sent as server ID.

message Text

vendorclass Text

clientid Text

bootfile Name of the file the DHCP client should use as boot image.

userclass Text

wpad Settings for MSIE Web Proxy Autodiscovery Protocol.

vendorspec This can be an arbitrary hex string. The format is:
vendorspec = 41:65:d:a:0

static_lease Defines a static lease for a specific MAC address. The MAC
address and IP address are separated by space. This parameter
can appear multiple times.
Example:
static_lease = 00:11:22:33:44:55 192.168.1.11

4.2.12 [dhcprelay]
This section defines DHCP relay services.

Attribute Value (Default) Description

start no Defines if the service is started.

client List of interfaces (comma separated)to listen for DHCP requests
on. If empty, listen on all interfaces.
If an interface is prepended with a '!', the interface is excluded
from the list. The entry “client = !vlan1” means to listen on all
interfaces except vlan1.

server List of servers that DHCP requests are forwarded to. Can be IP
addresses or interfaces. If set to an IP address, the packets are
unicast to the address. If set to an interface, the packets are
broadcast on that interface.
The gw-addr field in the DHCP header is filled with the interface
the packet was received on.

4.2.13 [ftp]

Attribute Value (Default) Description

start no If set to yes, the FTP server is started.

basic yes If set to yes, some basic configuration options are used.

anonymous yes If set to yes, anonymous login is allowed.

AnyRover
:
16 November 2020
page 41 / 120

anonymous_dir /media/sda1 Directory for anonymous users. They cannot leave this directory.

anonymous_write no If set to yes, anonymous users can upload files.

anonymous_delete no If set to yes, anonymous users can delete files.

option These options are written directly to the vsftpd.conf file.
Hint: vsftpd does not allow spaces in the options.

4.2.14 [tftp]

Attribute Value (Default) Description

start no If set to yes, the TFTP server is started.

upload no If set to yes, uploads to the AnyRover are allowed.

rootdir /tftp Directory for the TFTP server. Only files in this directory can be
loaded over TFTP, and uploads are stored here.

port 69 UDP port where the TFTP server listens on. Don't forget to open
this port on the firewall.

4.2.15 [firewall]
Define firewall rules. The rules are applied and later checked in the order they are
placed in the config file.

Rules are divided into two categories: firewall rules are rules that only inspect a packet
and then decide what to do. Mangle rules are the rules that modify packets, e.g. nat or
port forwarding.

Attribute Value (Default) Description

filter_bridged yes If set to yes, packets on the bridge are seen by the firewall. This
can only be set globally, not per bridge.

filter_vlan yes If set to yes, VLAN tagged packets on the bridge are seen by
the firewall. This can only be set globally, not per bridge.

forward yes The kernel forwards packets from one interface to another. If set
to no, local clients have no access to the internet.

nflog_start NFLOG is a logging method where logged packets can be
received and evaluated by user space programs. If this
parameter is set to yes, the system will evaluate NFLOG packets.

nflog_script /etc/scripts.d/
nflog.sh

If a packet is logged through NFLOG, the system will execute
this script and passes all relevant information through
environment variables (NFLOG_*).
The default script will execute all scripts in /etc/scripts.d/nflog/ in
alphabetical order.

nflog_group 7 The NFLOG target knows different groups. This parameter
defines which group is used in the system.
Possible values: 1-32

nflog_payload_leng
th

64 Number of bytes to copy for UDP packets to the variable
NFLOG_PAYLOAD. If non-printable characters are encountered,
copying stops immediately.

start_firewall If set to yes, firewall rules are applied.

AnyRover
:
16 November 2020
page 42 / 120

basic yes If set to yes, some basic rules are implemented:
– Block all connections to AnyRover and through AnyRover
– Allow ICMP echo requests (ping)
– Allow established connections
– Allow related connections (e.g. FTP data, ICMP errors)

new_chain Allows the creation of a new filter chain, the value is the name
of the chain. The name must not contain spaces or underscores.
To create multiple new chains, use the attribute repeatedly.

accept
accept_fw
accept_out
accept_chain
drop
drop_fw
drop_out
drop_chain
reject
reject_fw
reject_out
reject_chain
return
return_fw
return_out
return_chain
log
log_fw
log_out
log_chain
nflog
nflog_fw
nflog_out
nflog_chain
chain

Definition of firewall rules.
Syntax:
TARGET = [SRC][,[!]proto[,DST]][,R:RATE][,L:prefix][,I:ICMP][,MAC:
[!]ADDR]
where:
TARGET = RULE[_CHAIN]
RULE = (accept|drop|reject|return|log|nflog|custom chain
name)
_CHAIN = (|_in|_fw|_out|_NAME)
SRC,DST = [[!]if] [ipsec] [[!]net][:[!]ports]
RATE = [rate][:burst]
ADDR = {MAC address}
ICMP = (icmp-port-unreachable|icmp-host-unreachable|icmp-
port-unreachable|icmp-proto-unreachable|icmp-net-
prohibited|icmp-host-prohibited|icmp-admin-prohibited)
An exclamation mark inverts the matching, i.e. the rule then
matches everything except the given value.
if: input or output interface. For bridge interfaces, the physical
interface can be specified: br0>vlan1.
ipsec: the rule only matches if the unencrypted traffic enters
(SRC) or leaves (DST) through an IPsec tunnel.
The keyword ipsec can only be used either with SRC or with DST,
but not both (e.g. for _fw rules).
net: source or destination network
port: source or destination port; only active if protocol is tcp or
udp. If there are more than one port, they have to be
seperated with a colon.
proto: protocol (tcp, udp, esp, icmp)
rate: Can be used to rate limit the rule. Possible values are e.g.
3/sec, 6/min, 13/hour, 2/day. This function is mainly used for the
log target to prevent filling up the log file. This parameter is not
suited for bandwidth control.
burst: maximal initial number of hits (default: 5)
ADDR: Filter based on source MAC address of packet.
ICMP: when using the reject target, the sender is notified with
this message.
prefix: text to place in front of the packet information in the log
file. The text must not contain , or ' characters. The text can be
enclosed in quotes (“), but this is only needed if the text ends
with white space.
The difference between drop and reject is that drop silently
discards the packet, while reject informs the sender. Use drop
unless you know that you need reject.
Return stops processing in the current chain and returns to the
parent chain, or applies the chain policy in the root chains.
If RULE is set to the name of a custom chain, upon matching of
the rule parsing is continued in the named chain.
The _in chain applies to packets addressed to the AnyRover, the
_fw chain to packets being routed through the AnyRover, and
the _out chain for packets generated on the AnyRover and
leaving.
_NAME can be the name of a custom filter chain as defined

AnyRover
:
16 November 2020
page 43 / 120

above. If no chain is given (e.g. accept = …) the input chain is
used.
When a rule matches, processing stops, and the packet is
treaded according to the rule. The exception are the (nf)log
rules, which do not stop processing on a match.

rule Place any additional iptables rules here. The value is directly
passed to iptables.

start_mangle yes If set to yes, mangle rules are applied.

nat ppp0 List of interfaces where NAT will be enabled.

new_natchain Same as new_chain, but for the NAT tables.

portfw Defines port forwarding rules.
Syntax: [proto],target[:tport],dest[:dport][,source]
proto: protocol. If omitted, all protocols match.
target: interface name or address the packet is originally
addressed to. Can be a network addres (e.g. 192.168.2.0/24).
tport: port the packet is originally addressed to.
dest: IP address the packet is resent to.
dport: Port the packet is resent to. If omitted, the port value is
not changed.
source: the source address the packet has to come from. If
omitted, any source address matches.

snat
dnat

Source- and destination-NAT rules. Syntax (similar to firewall rules
above):
snat = [SRC],[proto],[DST],T:target
dnat = [SRC],[proto],[DST],T:target
target defines the source or destination address to be set. For
snat, setting input interface is not possible, and output interface
for dnat (but addresses are).
Both IP address and port can be specified as ranges, e.g.
10.0.0.1-10.0.0.10:1000-1200.
Destination NAT rules are applied on incoming packets before a
routing decision is taken, source NAT rules on outgoing packets
after a routing decision has been taken, but before the packet
is checked for IPsec encryption.
Destination NAT is the same as portfw above, but with different
rule syntax.
Use case: for syslog and NTP traffic, no source can be specified,
the interface address on the direct path to the destination is
taken. But to send this traffic over IPsec, another source address
might be necessary. Having 10.11.12.13 the syslog server and
192.168.1.3 the internal IP address, the appropriate rule is:
snat = ,udp,10.11.12.13:514,T:192.168.1.3
Further examples:
dnat = ,tcp,192.168.1.0/24,T:10.1.2.3:8000-8020
snat = 10.11.12.0/24,tcp,192.168.1.24,T:10.1.2.1-10.1.2.5

tcpmss_chain Used to modify TCP MSS (maximum segment size). The MSS is
only transmitted in the first packet of a TCP connection (SYN bit
set).
Syntax:
tcpmss_chain = [SRC],tcp,[DST],M:{mss}
Usable for the value chain are in, out, fwd, PREROUTING, and
POSTROUTING. SRC and DST are similar to the accept_* rules
above.
In PREROUTING, no output interface, and in POSTROUTING, no
input interface must be used. Source and destination networks
can be used though.

AnyRover
:
16 November 2020
page 44 / 120

4.2.16 [dyndns]

Attribute Value (Default) Description

start yes If set to yes, the DynDNS daemon is started.

username user User name with the DynDNS provider.

password pass Password with the DynDNS provider.

hostname myhost.dyndns.org Host name of the DynDNS server where the update must be
performed. This attribute can appear multiple times if the
provider has several servers.

option syslog These options are placed directly into the config file of INADYN

4.2.17 [ppp]
This section defines a PPP connection on a 3G modem. It can appear multiple times for
multiple connections (but then multiple modems are required).

To perform action on PPP state changes (connection up or down), scripts can be
deposited in /etc/scripts.d/ppp-up-hooks and /etc/scripts.d/ppp-down-hooks. The scripts
get some information through parameter.

The scripts can be defined through script sections.

Attribute Value (Default) Description

modem This parameter which must be the first one in this section
references a modem section and defines the modem to use to
set up the ppp connection.

start yes If set to yes, the ppp daemon is started. Without ppp daemon,
no UMTS connection can be established.

user User name for login at the provider. If not used, comment this
line out.

password Password for login at the provider. If not used, comment this line
out.

defaultroute yes If set to yes, the PPP connection will be set as default route.

defaultmetric Defines the metric of the default route. PPP will not replace an
existing default route with the same metric (default: 0).

usedns Defines whether to use name servers as advertised by peer.

debug no If set to yes, pppd logs additional information to the system log.

basic yes If set to yes, use standard options for ppp daemon.

chat_verbose yes If set to yes, chat logs the execution state as well as all text
sent and received during dialling. Only has an effect if
basic=yes

chat_script basic Selection of the chat_script section. This value references the
name attribute in the chat_script section.

restart yes If set to yes, the modem is reset when ppp connection goes
down.

timeout 2 Time in seconds to leave the modem switched off.

AnyRover
:
16 November 2020
page 45 / 120

hold_nocarrier If set to yes, do not restart modem when connection fails with
NO CARRIER. This leads to faster reconnect times after losing
connection because of no reception in dead zones.

filter Packets that match this filter will trigger dial-on-demand and
reset the idle-counter. If not set, all packets match.
Syntax is similar to tcpdump, see tcpdump man-page for further
details. Expressions that are inappropriate for ppp links such as
ether and arp are not permitted.
Syntax:
[(] [not] expr [)] [and|or] [[)] [not] expr [)]]
if src and dst are omitted, both directions match
[src|dst] host HOST
[src|dst] net NET [mask MASK]
[src|dst] port PORT
[src|dst] portrange RANGE
ip proto \\(icmp|ah|esp|tcp|udp)
(inbound|outbound)
expr RELOP expr
RELOP is one of <, >, <=, >=, =, !=
expr can contain integers, +, -, *, /, <<, >>, &, |
PROTO[expr[:size]]
Example:
filter = outbound and not ((tcp[13] & 4 != 0) or (icmp[0] = 3))

option demand
persist
idle 300
holdoff 15

These options are written directly into the configuration file of
the pppd. If the option demand is used without persist, then
nopersist has to be given explicitely.

4.2.18 [chat_script]

Attribute Value (Default) Description

name basic Identifies the section. This name is referenced in the [ppp]
section.

apn gprs.swisscom.ch APN for the UMTS access. This parameter is only relevant in the
chat_script section named basic.

script All script lines are copied to the chat script file. These lines are
only relevant in chat_script sections other than basic.

4.2.19 [wan]
For LTE and newer modems, the 3G/4G connection is established with a WAN section
instead of a PPP section.

Attribute Value (Default) Description

start Only start WAN connection if set to yes. If there is an active ppp
section for the same modem, this parameter is overruled.

modem Name of the modem section to use for this connection.

apn gprs.swisscom.ch APN for the 3G/4G access.

user User name for login at the provider.

password Password for login at the provider.

AnyRover
:
16 November 2020
page 46 / 120

ipaddr IP addressing options. This parameter works like the ipaddr
parameter in the system section.
Example: ipaddr = dhcp default nolinklocal dns

radio_access Define which radio access technologies to use. Possible values:
0, 3, 4: Automatic
1: UMTS 3G Only
2: GSM 2G Only
5: GSM and UMTS Only
6: LTE Only
7: GSM, UMTS, LTE
Default value: 3

chat_verbose If set to yes, all chat messages for setting up the modem will be
logged in the system logfile.

4.2.20 [ipsec]
This section defines an IPsec tunnel. If multiple tunnels to different peers are needed, the
section can be used multiple times.

To perform actions on IPsec state changes, scripts can be deposited in the /etc/scripts.d/
ipsec-hooks/ directory. There can either be an executable file or a directory with one of
the names prepare-host, prepare-client, route-host, route-client, unroute-host, unroute-
client, up-host, down-host, up-client, down-client. If it is a directory, all executable scripts
within named *.sh are executed.

The scripts are executed at the respective state change, and all information is passed in
environment variables.

The scripts can be defined through script sections.

Attribute Value (Default) Description

start yes If set to yes, IPsec daemon is started.

name Name of the connection. This name is used in the config file
/etc/ipsec.conf.

setup Define the action to take on this connection upon IPsec start.
Possible values are:
start: try to setup connection
route: prepare everything, but only start when traffic flows
add: prepare, but wait for peer to setup connection

ike 1 Version of IKE protocol to use. Possible values: 1 or 2.
Cisco devices (and Cisco VPN client) use version 1.

fragmentation If set to yes, large IKE messages will be fragmented. If set to no
(default if not set), IP fragmentation will apply.

mobike If set to yes, MobIKE extension is used (RFC 4555).
With MobIKE, the AnyRover can renegotiate a tunnel if the local
IP address of the tunnel endpoint changes.
MobIKE is not meant to dynamically switch to another interface,
only to handle changing IP addresses on a single interface.
If MobIKE is used, tunnel negotiation uses both UDP ports 500
and 4500. Without MobIKE, port 4500 is only used if NAT-T is
enabled.

remote 192.168.17.42 IP address or host name of peer. If using a host name, enclose in

AnyRover
:
16 November 2020
page 47 / 120

Attribute Value (Default) Description

“ and make sure it can be resolved. To allow clients with
unknown IP address (road warrior) to connect, set this to “any”.

local List of interfaces the IPsec daemon listens on for incoming
connections.

local_within If the route to remote goes over one of the interfaces listed
here, the IPsec connection is started. If the interface is not listed,
the connection is not started. If the parameter is not defined or
empty, the connection is started.

local_net List of local networks or interfaces that can use the IPsec tunnel.
If not set, the first configured interface from this list is taken: eth0,
vlan1-4

Protocol Limit IPsec tunnel to a single protocol and/or port. Both protocol
and port can be specified by name or number.
Syntax: [proto][,[sport][,dport]].
Port numbers are given for traffic to the peer; for traffic from the
peer, the port numbers are exchanged.
Example:
protocol = tcp, http
protocol = udp
protocol = , 443
protocol = udp, 67, 68

remote_net 192.168.1.0/24 Network on the other side of the tunnel. Several networks
separated by space can be given.
In case of a road warrior, where the remote net is unknown,
specify any, and the server will use the remote net as advertised
by the client.

remote_range When giving a network address here, road warriors can only
connect if their IP address is in this range.

remote_address The internal source IP address to use in a tunnel for the remote
peer. This is needed for example with Cisco VPN client.
If set to %config, the IP address proposed by the peer is echoed
back to the peer.

tunnel Defines which local_nets can communicate with wich
remote_nets. If not set, all possibilities are allowed.
All local_nets are labeled with a number (1, 2, …)
All remote_nets are labeled with a letter (a, b, …)
The parameter lists all pairs that are allowed. If it starts with a
slash (/), the list contains the pairs that are prohibited.
The parameter can be used to define source policy routing
through the IPsec tunnel. If the parameter is followed by a colon
an an optional interface or IP address, then upon completion of
the tunnel a route is set to the remote net with the IP address of
the given interface as source. If no source is given, the IP
address of the interface on the local subnet is used.
To set the source policy route for all connections, put the colon
as the first character of the string, even before e possible “/”.
Example:
local_net = loc1 loc2
remote_net = rem1 rem2
tunnel = 1a 1b 2b
tunnel = /2a
Both entries define that loc1 can connect to both rem1 and
rem2, while loc2 can only connect to rem2.
tunnel = 1a:eth0 1b:192.168.1.1 2a: 2b
tunnel = :1a 1b 2b
tunnel = :/2a

AnyRover
:
16 November 2020
page 48 / 120

Attribute Value (Default) Description

tunnel = :/

natt yes Use NAT traversal. This is needed if the IPsec packets are natted
somwhere between the AnyRover and the peer.
Only relevant for IKEv1. Automatically detected with IKEv2.

natt_keepalive 10 Interval in seconds for NAT keep alive packets. They keep the
path through all NAT gateways open.

dpd 5,5,5 Defines the parameters for dead peer detection. The values are:
dpd_delay, dpd_retry, dpd_max
dpd_delay: Send a DPD packet every N seconds
dpd_retry: time in seconds until packet is considered as failed
dpd_max: number of consecutively failed packets until peer is
considered dead.

dpdaction Defines the action to perform when a dead connection has
been recognized. Possible values:
restart: try to re-establish the connection
clear: delete and unroute the connection. It cannot be
reestablished afterwards
hold: hold the connection

tries 0 How many attempts should be made to negotiate a
connection, or a replacement for one (DPD), before giving up.
Can be a positive integer value, or 0 for forever (default).

my_identifier asn1dn, How to identify with the peer (the comma after asn1dn is
crucial).
Using hostname: fqdn, NAME
Using address: address, ADDRESS
Using certificates: asn1dn,

peers_identifier asn1dn, How the peer identifies itself. Cf. my_identifier

auth_method
local_auth
remote_auth

cert Authentication method. auth_method is used for IKEv1,
local_auth and remote_auth for IKEv2.
Possible values:
any: default for remote_auth if not set.
psk: pre shared key (default for local_auth)
pubkey: certificates
cert: synonym for pubkey for IKEv1
xauth-psk: XAUTH with PSK (for IKEv1 only)
xauth-cert: XAUTH with certificates (for IKEv1 only).

psk mysupersecretkey Value of the pre shared key.

xauth Specify the role in XAUTH authentication. Possible values are
server and client.
This is relevant only if auth_method is xauth-psk or xauth-cert.

xauth_id Username and password pair for XAUTH authentication. This
parameter can appear multiple times.
Syntax: xauth_id = username:password

cert ipsec-cert Certificate for identification. References a [certificate] section.

root ipsec-root Root certificate for identification. References a [certificate]
section.

key ipsec-key Private key for identification. References a [certificate] section.

crl ipsec-crl Certificate revocation list. References a [certificate] section.

ph1_encryption
ph2_encryption

aes 256
aes 256

Encryption algorithm for phase 1 (ISAKMP-SA) and phase 2
(IPsec-SA).
Supported algorithms: aes, twofish, blowfish, 3des
Key length can be given after the algorithm, separated by
space. Only use key lengths that are supported by the

AnyRover
:
16 November 2020
page 49 / 120

Attribute Value (Default) Description

respective algorithm:
aes, twofish: 128 (default), 192, 256
blowfish: 40-448 (default: 128)
3des: 168 (fix)
The 3des algorithm is quite old and should not be used any
more.

ph1_hash_alg
ph2_hash_alg

sha256
sha256

Hash algorithm for authentication for phase 1 (ISAKMP-SA) and
phase 2 (IPsec-SA).
Supported algorithms: md5, sha1, sha256, sha384, sha512
md5 and sha1 are not considered secure any more.

ph1_prf It is possible to explicitely define the PRF algorithm for phase 1.
If not configured, the same algorithm as for hashing is used.
Possible values: md5, sha1, sha256, sha384, sha512, aesxcbc,
aescmac

ph1_strict
ph2_strict

If set to yes (default if unset), only the algorithms listed above will
be accepted for the tunnel. If set to no, all supported algorithms
will be accepted if proposed by peer.
Only use this for debugging purposes, e.g. to connect to a peer
where supported proposals are unknown.

ph1_lifetime
ph2_lifetime

time 86400 sec
time 3600 sec

Lifetime for phase 1 (ISAKMP-SA) and phase 2 (IPsec-SA).
Lifetime defines the time after which new keys are generated.
The keyword time gives a time span, the unit can be sec, min,
and hour.

dh_group 2 Diffie-Hellmann group for encryption phase 1 (ISAKMP-SA). The
higher the number, the more secure, the slower calculations.
Possible values: 1, 2, 5, 14, 15, 16, 17, 18
Has to be the same on both ends.
Group 1 is not considered secure any more.

pfs_group 2 Diffie-Hellmann group for phase 2 (IPsec-SA). Cf. dh_group.
If no value is given, no pfs is used (not recommended).
PFS (perfect forward secrecy) ensures that after a change of
keys in phase 2 the new keys cannot be derived from the old
ones.

4.2.21 [certificate]
The certificates that are defined in a [certificate] section can be used for IPsec and for
OpenVPN connections. The [certificate] section has to be placed after the respective
[ipsec] or [openvpn] section to be found.

Attribute Value (Default) Description

name The name identifies the certificate and is referenced in the
[ipsec] or [openvpn] section.

type pem Certificate type. Possible values are pem, p12 and file.
Encrypted p12 files are not supported.

file File that contains the certificate. Only valid if type=p12 or type
=file. P12 only works with OpenVPN.

-----BEGIN
MIICWwIBAAKB...
-----END

The rest of the section between the lines
-----BEGIN
and
-----END
is the certificate.

AnyRover
:
16 November 2020
page 50 / 120

4.2.22 [openvpn]

Attribute Value (Default) Description

start_server yes If set to yes, start OpenVPN server.

start_client no If set to yes, start OpenVPN client.

basic_server yes If set to yes, basic options for OpenVPN server are used.

basic_client yes If set to yes, basic options for OpenVPN client are used. These
options are sufficient to connect to an IPCop machine.

server_net 192.168.0.0
255.255.255.0

Virtual network of the OpenVPN connection.

server_remote_net 192.168.2.0/24 Networks of the peer (client). A route to these nets is defined on
the host. The list contains network/prefix pairs separated by
space.

push_local_net 192.168.2.0/24 If set, pushes a route to these nets to the client. The list contains
network/prefix pairs separated by space.

push_default yes If set to yes on the client, the default route is set through the
tunnel.

remote vpnserver.example.
org

IP address or host name of the OpenVPN server. If the server
doesn't listen on the default port (UDP 1194), the correct port
can be appended, separated by colon.
vpnserver.example.org:1234

client_remote_net Networks of the peer (server). A route to these nets is defined on
the host. The list contains network/prefix pairs separated by
space.
Note: these routes can be pushed by the server, cf.
push_local_net.

server_auth_method Authentication method when running as a server. Can be one
of cert for certificate based authentication or psk for pre-shared
key.
Hint: if using pre-shared key, the key must be generated using
openvpn and entered into a certificate section:
openvpn --genkey --secret key.file

client_auth_method Same as server_auth_method when running as client.

server_cipher Cipher to use for encrypted traffic. Default if not specified is BF-
CBC. However, this is no longer recommended. For better
securtiy, use AES-128-CBC.
To see all available ciphers, call
openvpn --show-ciphers

client_cipher Cipher to use for encrypted traffic. See server_cipher.

server_psk If server_auth_method is set to psk, enter the reference to the
certificate section containing the pre-shared key.

client_psk Same as server_psk when running as client.

server_cert server-cert Certificate for the operation as server. References a [certificate]
section that must be placed after the [openvpn] section.

server_root server-root Root certificate for the operation as server. References a
[certificate] section that must be placed after the [openvpn]
section.

server_key server-key Private key for the operation as server. References a [certificate]

AnyRover
:
16 November 2020
page 51 / 120

Attribute Value (Default) Description

section that must be placed after the [openvpn] section.

client_cert client-cert Certificate for the operation as client. References a [certificate]
section that must be placed after the [openvpn] section.

client_root client-root Root certificate for the operation as client. References a
[certificate] section that must be placed after the [openvpn]
section.

client_key client-key Private key for the operation as client. References a [certificate]
section that must be placed after the [openvpn] section.

server_option
client_option

Additional options for client and server that are directly placed
in the configuration files.
When using BF-CBC, inserting this line is recommended to
counter SWEET32 attacks:
client_option = reneg-bytes 64000000

4.2.23 [clientconfigfile]
Using [clientconfigfile] sections, OpenVPN client config files can be placed in the
configuration file. The attribute must be present at the beginning of the section, the rest
up to the next section start is copied to the script file. Lines in the script file must not start
with an opening square bracket '['.

Attribute Value (Default) Description

file Name of the config file. The filename must be specified without
a path. The file is stored in the directory /etc/openvpn/ccd.

4.2.24 [tunnel]
This section defines one IP-in-IP or GRE tunnel. If multiple tunnels are needen, every tunnel
is defined in it's own [tunnel] section.

Attribute Value (Default) Description

name Name of the tunnel. The tunnel interface will be named like this,
so the name must not be tunl0, gre0, eth0, or ppp0.

start If set to yes, tunnel is started.

type gre Tunnel type. Possible values are ipip (IP-in-IP tunnel), GRE (gre
tunnel), and sit (IPv6 in IPv4 tunnel).

local IP address or name of local tunnel endpoint. The remote
endpoint is only contacted through this interface, so If the route
to the remote server is not through this interface, tunnel setup
will fail.

remote IP address of the remote peer.
Hint: this tunnels will not work if one of the endpoints is behind a
NAT gateway. Use IPsec or OpenVPN in this case.

remote_net Address of the networks that are behind the tunnel. Multiple
networks are separated by space. The address is given with
prefix, i.e. 192.168.17.42/24

vlocal Address of the tunnel interface on the virtual network. This is a
host address with prefix.

vremote Address of the remote tunnel interface on the virtual network.
This is a host address.

AnyRover
:
16 November 2020
page 52 / 120

4.2.25 [bridge]
This section defines bridges between logical and physical interfaces. This section can
appear multiple times, every section defines one bridge.

Some rule for using bridges:
- An interface can only be part of at most one bridge
- If an interface is part of a bridge, it cannot be used directly anymore

The STP protocol takes by default approx. 50 seconds to react on a topology change. By
setting the values hello=1, age=4 and fw_delay=4 on every device taking part in STP
negotiations, this time can be reduced to 12 seconds.

Attribute Value (Default) Description

name The name of the bridge. The name must not collide with any
other interface. It is best to used names like br0, br1...

start no The bridge is only created if this parameter is set to yes.

ipaddr IP address and netmask or prefix of the bridge interface. The
address can be given as 192.168.1.3/24 or 192.168.1.3
255.255.255.0. Using the parameter mtu:1492, the MTU of the
interface can be set.
To dynamically configure the interface, dhcp can be
configured. If the value is “dhcp default”, the dhcp client will
also set the default route.
More possible parameters after dhcp:
metric:M sets the metric of the route (default: 0)
timeout:T sets the timeout to T seconds (default: 30)
dns: Queries the DHCP server for DNS server addresses, and
replaces current DNS configuration
hostname: queries the DHCP server for a hostname,and
replaces the hostname if it is localhost.

iface List of interfaces separated by space, that are part of this
bridge.

stp no If set to yes, the spanning tree protocol (STP) is enabled on the
bridge. All further parameters concert STP and are ignored if this
is set to no.

prio Priority of the bridge for the election of the root switch.

portprio List of interface:priority values. This is used to set the priority of
the interfaces.
Example: portprio = vlan2:34 vlan3:77

hello 2 Hello timer of the STP protocol.

age 20 Ageing timer of the STP protocol.

fw_delay 15 Forward delay timer of the STP protocol.

cost List of interface:cost values. This defines the costs of the
individual paths.
Example: cost = vlan2:46 vlan3:84

4.2.26 [banner]

AnyRover
:
16 November 2020
page 53 / 120

Attribute Value (Default) Description

start The banner is only shown if this is set to yes.

The whole text of this section (after the start attribute) is printed upon login (on the
console as well as on network login). The first line starting with '--- END MOTD ---' or the
start of the next section ends the message (and is not included itself).

4.2.27 [daemons]

Attribute Value (Default) Description

start Defines a program that is started at the end of the boot process.
This program can be a script defined via a [script] section.
The attribute start can appear multiple times, the scripts are
started in the order they appear in the config file.

4.2.28 [script]
Using [script] sections, arbitrary scripts or other text files can be placed in the
configuration file. The three possible attributes must be present at the beginning of the
section, the rest up to the next section start is copied to the script file. Lines in the script
file must not start with an opening square bracket '['.

Hint: Files in /etc/scripts.d/ are deleted upon system boot and recreated. Files not in this
directory are not automatically deleted, espescially not if the section is removed from the
config file. It is thus not recommended to place files in other directories than
/etc/scripts.d/ as this can have hard to find side effects if the configuration is changed
later on.

Attribute Value (Default) Description

name Name of the section. Currently not used.

file Name of the file. If the name begins with a slash '/', the path is
taken absolute, otherwise it is taken relative to /etc/scripts.d/.
Non-existing directories are automatically created.

mode Mode of the file, given as standard Unix file modes. For scripts
that are executed, use 755, otherwise 644 is fine.
If the value is of the form Link:FILENAME, then the name of file is
created as a symlink to FILENAME, and the rest of the section is
ignored. In this case, the mode parameter must appear after
the file parameter in the config file.

4.2.29 [webserver]
Configuration for the web server and the WebGUI.

Attribute Value (Default) Description

start yes Start the web server?

port 80 TCP port to listen on.

interface all Network interface to listen on. Can be one of
eth0,ppp0,vlanX,brX, an IP address, or all.

AnyRover
:
16 November 2020
page 54 / 120

document_root /usr/share/www Document root for the web server.

user User the web server is run as. If not specified, nobody is used.

group Group the web server is run as. If not specified, nogroup is used.

access_log /var/log/boa/
access_log

Log file of the web server where all accesses are logged.

error_log /var/log/boa/
error_log

Log file of the web server where all errors are logged.

default_mime text/plain MIME type of file that cannot be identified from their extension.
Example: default_mime = application/x-httpd-cgi
This will interpret files without extension as scripts.

option Add further options directly to config file of web server. The are
transferred without modification.

4.2.30 [wlan]
This section configures the WLAN connection. It has no effect if no WLAN card is included
in the AnyRover.

The WLAN card can be operated in access point, client mode, or mesh (pre IEEE 802.11s)
mode. Some options in this section are not for all modes. In the table, the mode specific
options are marked with (AP) for access point, (CL) for client, and (M) for mesh.
Unmarked options are used in all modes.

This section can appear multiple times.

It is possible to run multiple SSID on a single access point. To do this, a separate section
must be defined for every SSID, where the device name of further sections must have the
device name of the firsts section as a prefix (e.g. first section: device = wlan0; second
secstion: device = wlan0_1). Parameters concerning the radio must not be redefined
(e.g. channel).
The additional devices will appear as network interfaces in the system, and can be used
for routing, firewalling, DHCP server etc.

In access point and client mode, scripts are called for every connect and disconnect
event. These scripts are placed in /etc/scripts.d/wlan-ap-hooks (for AP mode) and
/etc/scritps.d/wlan-client-hooks (for client mode). The scripts have these parameters:

interface cmd [clientMAC]

interface defines the interface the event occurred on, cmd has the values AP-STA-
CONNECTED and AP-STA-DISCONNECTED for AP mode, or CONNECTED and
DISCONNECTED for client mode. In AP mode, the third parameter is the MAC address of
the client.

Attribute Value (Default) Description

start yes Start the wlan card?
Make sure to enable power on the USB bus on the usb section.

mode Select the mode. Possible values: ap, client and mesh

AnyRover
:
16 November 2020
page 55 / 120

Attribute Value (Default) Description

device Defines the wireless device. For the optional internal WLAN card,
this is wlan0.
If the device is to run as a standalone Radius server, this
parameter is set to none (and mode to ap).

country Defines the country the system is operated in. This is used to
select the valid WLAN channels.
Possible values: ch, de, fr, us, ...

channel Select WLAN channel. Can be a list of channel in (CL) mode.

ipaddr dhcp IP address and netmask or prefix of the WLAN interface. The
address can be given as 192.168.1.3/24 or 192.168.1.3
255.255.255.0. Using the parameter mtu:1492, the MTU of the
interface can be set.
(CL, M) To dynamically configure the interface, dhcp can be
configured. If the value is “dhcp default”, the dhcp client will
also set the default route.
More possible parameters after dhcp:
metric:M sets the metric of the route (default: 0)
timeout:T sets the timeout to T seconds (default: 30)
dns: Queries the DHCP server for DNS server addresses, and
replaces current DNS configuration
hostname: queries the DHCP server for a hostname,and
replaces the hostname if it is localhost.

ssid (AP, CL) SSID of the network. Can be an ASCII string or a hex
value. Hex values must start with 0x.

key_management WPA-EAP (AP, CL) Key management protocol. Possible values are: WPA-
PSK, WPA-EAP, IEEE8021X, NONE
Multiple values can be given separated by space.

pairwise TKIP (AP, CL) List of accepted pairwise (unicast) ciphers. Possible
values are: CCMP, TKIP, WEP104, WEP40
If not set defaults to all.

wep_key (AP, CL) WEP keys. Up to four WEP keys can be entered, each
on a separate line. The keys can be ASCII text or a hex value
(starting with 0x).

wep_default_key (AP, CL) Index of key to use for transmission.
Possible values: 0-3

eapol_version 1 (AP, CL) Many APs only support EAPOL v1.

scan_ssid no (CL) If set to yes, the network is scanned with SSID specific
frames. This is used if the access point does not broadcast its
SSID.
Do not enable if not needed, since it increases latency while
scanning.

pre_shared_key (CL) Pre-shared key for the network. Can be an ASCII string or a
hex value. Hex values must start with 0x.

eap PEAP (CL) Space separated list of accepted EAP methods. Possible
values: MD5, MSCHAPV2, OTP, GTC, TLS, PEAP, TTLS

group TKIP (CL) List of accepted group (broadcast/multicast) ciphers.
Possible values are: CCMP, TKIP, WEP104, WEP40
If not set defaults to all.

identity (CL) Identity string for EAP.

password (CL) Password for EAP.

root (CL) Root certificate for certificate based authentication.
References a [certificate] section.

AnyRover
:
16 November 2020
page 56 / 120

Attribute Value (Default) Description

cert (CL) Certificate for certificate based authentication. References
a [certificate] section.

key (CL) Private key for certificate based authentication. References
a [certificate] section.

phase1 (CL) Phase 1 (outer authentication) parameters.

phase2 auth=MSCHAPV2 (CL) Phase 2 (inner authentication) parameters.

mesh_id (M) The mesh ID. All stations taking part in the mesh must have
the same mesh ID.

wpa (AP) Selection of WPA standard. Possible values are wpa and
wpa2. If not set, no WPA is used.

broadcast_ssid yes (AP) If set to no, the SSID will not be broadcast. Clients can only
connect if they know the SSID.
Is not suitable as security element, since this will not hinder an
attacker.

ieee80211d no (AP) The AP advertises its regulatory domain according to
standard IEEE 802.11d.

Ieee802.11n no Use IEEE 802.11n. If set to yes, set hw_mode = g for a 2.4GHz
access point or hw_mode = a for a 5GHz access point.

hw_mode (AP) Select one of 802.11a,b,g.
Only place the letter (a,b,g) here.

macacl (AP) Enable or disable MAC address filter. Possible values.
no: MAC address filter is disabled.
accept: Clients can connect unless the MAC address is in the
deny list.
deny: Clients cannot connect unless the MAC address is in the
accept list.

acl_accept
acl_deny

(AP) List of accepted or denied MAC addresses. These
paramters are only relevant if macacl ist set accordingly.
macacl=accept: acl_deny is active
macacl=deny: acl_accept is active
The value is the MAC address. For multiple addresses, use
multiple entries.
Example:
acl_accept = 00:11:22:33:44:55

cap_htgf (AP) For 802.11n. Enable High Throughput Mode (Greenfield
Mode).
This mode should only be used if no 802.11b/g clients are
connecting, otherwise the network will not work reliably.

cap_40mhz (AP) For 802.11n. Enable support for 40MHz channels. Can be set
to 40- or 40+. If set to 40-, then only channel 5-13 can be used
with 2.4GHz and 40,48,56,64 for 5GHz. If set to 40+ it is channel 1-
7 for 2.4GHz and 36,44,52,60 for 5GHz.

cap_short_gi (AP) For 802.11n. Enable support for Short Guard Interval. This
can increase the data rate up to 11%, at the cost of a less
stable network and increased packet collisions.

cap_rx_stbc (AP) For 802.11n. Define the number of receiving antennas used.
Possible values: 1, 2

cap_amsdu (AP) For 802.11n. Enable Frame Aggregation. Results in an
increased user level data rate.

wpa_psk (AP) WPA pre-shared key. Defines the pre-shared key for PSK.
The key can be an ASCII-string (8..63 characters) or a hex value
(64 hex digits).
If wpa_psk is given, wpa_psk_entry is ignored.

AnyRover
:
16 November 2020
page 57 / 120

Attribute Value (Default) Description

wpa_psk_entry (AP) WPA pre-shared key for a specific MAC address. This entry
can appear multiple times.
Syntax: MAC KEY
The MAC address 00:00:00:00:00:00 can be used to match every
client.
If wpa_psk is given, wpa_psk_entry values are ignored.

ieee8021x no (AP) Enable or disable 802.1x (yes or no)

authentication (AP) References a [authentcation] section for an EAP or RADIUS
server.

use_radius_server (AP) Enable or disable access to external Radius server (yes or
no)

source_addr (AP) Define the source address the authenticator uses to
contact the Radius server.

radius_ipaddr (AP) IP address of the access point. This address is used as NAS-
IP address. If omitted, the IP address of the WLAN card is used.

radius_server (AP) IP address and port of the Radius server. If no port is given,
1812 is used.
Multiple Radius server can be configured by repeating this and
the next parameter.
Example: radius_client_server = 192.168.99.4:1812

radius_secret (AP) Password for accessing the Radius server. The password
always belongs to the last server address defined previously.

radius_accounting (AP) IP address and port of the accounting server. If no port is
given, 1813 is used.
Example: radius_client_accounting = 192.168.100.3:1813

radius_acct_secret (AP) Password for accessing the accounting server. The
password always belongs to the last server address defined
previously.

radius_retry (AP) Interval in seconds after which the first Radius server is tried
again. If not given, the servers are used in order, and the system
changes to the next one if the current server is not reachable
any more.

4.2.31 [authentication]
This section defines authentication servers. These can be an internal EAP server for a
WLAN access point, the connection details for an external RADIUS server, or a
standalone RADIUS server. The section can be present multiple times. An integrated EAP
server for a WLAN access point can be defined alongside a standalone RADIUS server.

Attribute Value (Default) Description

name Unique name of the section. This parameter must be set and
must be the first parameter in the section.

start The section is only evaluated if set to yes.

standalone Set to yes if this section defines a standalone RADIUS server. Set
to no if it is referenced from a wlan section.

eap_phase1_id Defines paramters for phase 1 authentication.
Syntax: eap_phase1_id = type [username[:password]]
type is one of TLS, TTLS, or PEAP
Username and password can be specified if needed.

AnyRover
:
16 November 2020
page 58 / 120

Attribute Value (Default) Description

eap_phase2_id Defines parameters for phase 2 authentication.
Syntax: eap_phase2_id = type [username[:password]]
type is one of MSCHAPV2, MSCHAP, CHAP, or PAP for PEAP, as
well as the same values with prefix TTLS- for TTLS.
Username and password can be specified if needed.

root_cert (AP) Root certificate. This value references a [certificate]
section.

server_cert (AP) Server certificate. This value references a [certificate]
section.

server_key (AP) Server private key. This value references a [certificate]
section.

radius_start Set to yes if defining a standalone RADIUS server. The following
parameters are only evaluated if this is set to yes.

radius_addr Define the IP address the Radius server listens on.

radius_acct_addr Define the IP address the accounting server listens on.

radius_port 1812 UDP port the RADIUS server listens on for connection requests.

radius_acct_port 1813 UDP port the accounting server listens on for connections.

radius_client List of IP or network address (with prefix) that are granted access
to the RADIUS server. Multiple addresses can be specified
separated by space. This parameter can appear multiple times
to allow different addresses with different passwords.

radius_secret Password for the access to the RADIUS server. This parameter
always belongs to the last specified radius_client list.

4.2.32 [ospf]
Configuration of the Open Shortest Path First (OSPF) routing protocol.

Attribute Value (Default) Description

start yes Start OSPF daemon.

router-id Router ID for OSPF. This value can be an IP address or an
interface name. If an interface name is given, the first IP address
of this interface is used as router ID. For the loopback interface
this will be 127.0.0.1.

insert-default If set to yes, the system default route is advertised through OSPF.

area OSPF area definition. The definition contains the area number
and a list of interfaces that belong to this area.
Example: area = 0, vlan1, vlan2

stub Stub area definition. Identical to area definition, but the area is
marked as stub.

passive The network of this interface is advertised through OSPF, but the
protocol is not run on this interface. The value must be an
interface name.

auth Authentication options. These options contain the area number,
the authentication type and a list of interface:[id:]key tuples.
The authentication key can be one of key or md5. The key is
defined as interface:key for type key, or interface:id:key for type
md5. The id must be consistent across routers on a link.
Examples:
auth = 0, key, vlan1:verysecret, vlan2:evenmoresecret
auth = 1, md5, vlan2:2:unbreakable

AnyRover
:
16 November 2020
page 59 / 120

Attribute Value (Default) Description

range Route summarization. This parameter is only valid on ABRs (Area
Border Router). If networks in an area are contiguous, the router
can advertise a route summary into other areas. The definition
contains the area id, and a list of summarized networks.

4.2.33 [snmp]
This section defines the Simple Network Management Protocol (SNMP). The AnyRover
contains an SNMP agent that can answer SNMP requests and trigger SNMP traps.

Attribute Value (Default) Description

start yes Start SNMP daemon.

listen Defines interfaces and ports for SNMP to listen on.
listen = [proto:][interface/address:][port]
proto can be udp or tcp, interface can be the name of an
interface (e.g. eth0) or an IP address.
Default is udp:0.0.0.0:161
Multiple combinations ca be listed separated by comma.

location Text to be returned by SNMP in sysLocation.0.

contact Text to be returned by SNMP in sysContact.0.

services List of services to be returned by SNMP in sysServices.
Can be any combination of
physical, datalink/subnet, internet, endtoend, application
Instead of the list of services, the corresponding number can be
given, as the sum of 1, 2, 4, 8, 64 (for the respective services).

user User management. This parameter defines SNMP users.
User = SNMP vers,{ro|rw},{community|user:pw}[,src[,oid]]
For SNMP version 1 and 2, the community must be given, for
SNMP version 3 a username / passwort pair.
For SNMP version 1 and 2, two optional parameters can be
given:
src: source address or network where SNMP requests may
originate
OID: limits access to the subtree rooted at this OID

process Process monitoring
process = name [, max [, min]]
The process with the given name must be present in the process
list between min and max times, otherwise the respective error
flag is set.

exec
sh
extend

Execute arbitrary commands
exec = [OID,] name, path [,arg [,arg]]
When the OID is queried, the programm path is executed and its
information returned. If an OID is given, the information is rooted
at this place in the tree, otherwise it is returned in the extTable
subtree.
exec is used for binary programs, sh for shell scripts.
Extend is an improved form of exec and sh, where the results are
returned in two tables, once the full output as a single string,
and once every line separately.

trapcommunity Defines the default community for traps.

AnyRover
:
16 November 2020
page 60 / 120

Attribute Value (Default) Description

trapagent When querying variables for traps, the agent generates internal
SNMPv3 requests using this username. This user must exist and
have readonly access.

trapsink
trap2sink

Destination for traps
trapsink = [tcp|udp]:(IP addr/hostname)[:port][,community]
If no community is given, SNMP uses the community defined in
trapcommunity. Default protocol is UDP, default port 162.

authfail Defines whether Authentication Failure Traps should be
generated (yes or no).

updown Defines whether Interface Up/Down Traps should be generated
(yes or no).

monitor Defines a monitor for a MIB object.
monitor = name, expr [, action [, user [, freq [, oid [, oid]]]]]
The name must be unique for all monitors. Expr has the form:
OID | !OID | !=OID | OID OP value | OID min max
where OP is one of: ==, !=, <, <=, >, >=
action is the name of an action to perform if monitor triggers
(see below).
Freq is the interval in seconds between two consecutive checks
of expr. (Default: 600)
If no action is given, a default notification is sent.
If action is notification (either default or via action attribute),
additional OIDs can be given, which are sent along.

action Defines an action to perform when a monitor triggers.
action = name, type, value [, oid [, oid]]
The name is used in the monitor attribute to identify the action.
Type can be either set or notify.
If type is set, then value has the form OID = value, and the given
OID is set.
If type is notify, the value is the type of notification message that
is sent, and is one of:
coldStart, warmStart, linkDown, linkUp, authenticationFailure,
egpNeighborLoss, enterpriseSpecific
Further OIDs are sent along in the trap message.

4.2.34 [dns]
This section defines DNS proxy and server settings. DNS server is currently not supported.

Attribute Value (Default) Description

start_proxy no Start DNS proxy.

proxy_basic Set to yes to enable some basic parameters: block unnecessary
queries in Windows, addresses from private IP address ranges
and plain hostnames without domain.
Do not enable this when using Kerberos, SIP, XMMP, or Google-
talk.

proxy_interface Comma separated list of interfaces where DNS proxy shall listen
for queries.
If the list starts with '/', it defines the interfaces where not to
listen.
If left empty, the DNS proxy listens on all interfaces.
This parameter should not be used together with proxy_address.

proxy_address List of IP addresses the DNS proxy listens on for queries. If left
empty, the proxy listens on all addresses.

AnyRover
:
16 November 2020
page 61 / 120

Attribute Value (Default) Description

This parameter should not be used together with
proxy_interface.

proxy_port Port where the DNS proxy listens for queries. Default: 53

proxy_domain If set, this domain name is appended to all plain hostnames
before sending them to the DNS server.

proxy_param More parameters can be put here. Some useful parameters are
- strict-order: query the name servers strictly in the order they
appear in the /etc/resolv.conf file.
- all-servers: query all servers at the same time. If not set, they
are queried one after the other until one answers.

static_host Add static host entries.
Syntax: static_host = hostname, IP-address
Example:
static_host = google-public-dns-a.google.com, 8.8.8.8

4.2.35 [serports]
This section configures the serial ports

Attribute Value (Default) Description

enable no Enables or disables the serial ports

4.2.36 [openconnect]
OpenConnect is a client for Cisco's AnyConnect SSL VPN.

OpenConnect is not officially supported by, or associated in any way with, Cisco
Systems. It just happens to interoperate with their equipment.

Attribute Value (Default) Description

start Defines whether to start openconnect

remote Address of the remote server, in the form
https://server.example.org or https://192.168.20.12

username Username to log in to the VPN.

password Password to log in to the VPN.

check_certificate Openconnect complains and asks for confirmation if it cannot
verify the server certificate. Setting this parameter to no
prevents this check.

4.2.37 [mobileip]
The AnyRover can play Mobile Node and set up a MobileIP connection to a Home Agent
(HA). MobileIP is a VPN technology that can switch the tunnel to a new link within
seconds if the current link is no longer available, or if a higher prioritised link becomes
available.

Data in a MobileIP tunnel is not encrypted, for this an IPsec tunnel is usually used.

AnyRover
:
16 November 2020
page 62 / 120

The Mobile Node keeps a list of available interfaces for the connection to the HA. If the
current connection is no longer available, it will try the other possible routes one by one,
until it finds a new one. With larger lists of possible uplinks, this can lead to longer delays
until a switch is completed. It takes approx. 3 seconds per link to be tested.

MobileIP will call all hook scripts in /etc/scripts.d/mip-hooks/ whenever it registers with the
Home Agent, with the arguments “(RE)CONNECT” and the name of the interface the
tunnel runs through. The first time it creates the tunnel, the first argument is “CONNECT”
and IPsec will also be kicked, for every other call, the first parameter will be
“RECONNECT”. These scripts can be used to set up routing through the tunnel.

Attribute Value (Default) Description

start Defines whether MobileIP is started.

mode mn Defines the role of the devices. Currently, only Mobile Node is
supported.
mode = mn

ha Die IP address of the Home Agent.

hoa The Home Address of the Mobile Node.

ign_interface A list of network interfaces (comma separated) that must not be
used to connect to the HA.
The interfaces lo, tunl0 and gre0 are by default excluded from
use. To enable one of those, put them in the list prefixed with a
slash (/gre0).

routing default Defines the routing to be set up after the tunnel is established.
Possible values: default, none, {network}
Default: Set up a default route through the tunnel.
None: Do not set up any routing. All necessary routes have to be
set up using some kind of scripts.
If a network address is given, a route to this network is set up.

spi The Security Parameter Index, defines the Security Association
on the HA for this connection. Can be given decimal or in hex
(prefixed with 0x).
Example: spi = 0x10a

auth hmac-md5 Authetication algorithm.
Possible values: md5-prefix-suffix, hmac-md5, sha1, hmac-sha1
md5-prefix-suffix does not work with Cisco HA devices, use
hmac-md5 in this case.
Additionally, md5-prefix-suffix has known weaknesses.

secret The shared secret for tunnel authentication with the HA.
According to RFC2002, the secret has 16 or 32 bytes length, but
other lengths are also supported here.
The secret can be given as text or hex-number, prefixed with 0x.

replay timestamp Method for replay protection.
Possible values: none, timestamp, nonces

lifetime 3600 Tunnel life time in seconds. After this time, a new registration
request is sent to the HA. Values >=65535 mean infinity, i.e. no
new registration.

udpport 434 UDP port to send registration requests to. RFC says port 434.

udpsrcport UDP port to use as source in the communication with the HA.
If not set, a random port is used.

interval 200 Tunnel keepalive interval. An active tunnel is probed regularly.

AnyRover
:
16 November 2020
page 63 / 120

Attribute Value (Default) Description

This value defines the minimum interval between probes in
milliseconds.

linkdown 3 A tunnel is considered down after this number of consecutive
keep alive probes are not responded to.

tunnel_rtt 500 Initial tunnel round trip time in milliseconds. The RTT is constantly
adjusted to the real values, but never set below 200ms.

percentage 120 If an answer to a keep alive is not received during this
percentage ot the RTT, it is considered lost.

link_priority The Mobile Node keeps a list of currently available default
routes, sorted by routing metric.
If link priority is activated, the mobile node tests higher prioritised
routes (i.e. lower metric) for availability and switches in case it
finds one.
If link priority is not used, the Mobile Node will only switch to
another link if the currently used is no longer available.

link_prio_icmp yes This parameter has no effect if link_priority is disabled.
If set, the Mobile Node will send ICMP Echo Requests to the HA
to check for link availability.

link_prio_reg_valid no This parameter has no effect if link_priotiry=no or
link_prio_icmp=yes.
To check for link availability, the Mobile Node will send
Registration Requests to the HA. This parameter defines whether
these Registration Requests are valid.
Valid Registration Requests will cause the HA to switch to the
new link immediately, whereas the Mobile Node is not actually
ready yet to use the new link, resulting in a short interruption of
the link. Additionally, this behavior does not fit well with the
delayed switching as configured with the next two parameters.
Invalid Registration Requests have a timestamp which is 10 years
old, causing the HA to respond with a Registration Denied
message. But to check link availability, this is sufficient. As soon
as the Mobile Node intends to switch link, it will send another
(valid) Registration Request to the HA.

link_count 2 This parameter defines how many successful link checks the
Mobile Node must receive until it switches to the newly
available link. Using this and the next parameter, it can be
defined how quickly the Mobile Node switches to a new link.

link_interval 2 This parameter defines the interval for keep alive messages on
higher prioritised links. Using this and the previous parameter, it
can be defined how quickly the Mobile Node switches to a new
link.

4.2.38 [scep]
Placing certificates (e.g. for IPsec) directly into certificate sections is unpractical if the
device is operated longer than the certificates are valid, since it requires manual
certificate replacement in the config file. In this case, certificates can be automatically
obtained and renewed before expiry using SCEP (Simple Certificate Enrolment Protocol).

For every set of certificates, one [scep] section is used, it can therefore appear multiple
times.

AnyRover
:
16 November 2020
page 64 / 120

When a SCEP request is started, it loads the CA certificates, creates a private key and a
certificate signing request (CSR) which is then submitted to the SCEP server to obtain the
actual certificate.

After a SCEP request hast finished, hook scripts are started from /etc/scripts.d/scep-
hooks/. For every section, specific hook scripts from /etc/scripts.d/scep-hooks/<name>/
where name is the section name, are also started.

The hook scripts get some information via environment variables. These variables are
defined:

SCEP_NUMCERT = number of certificates to enroll
SCEP_SUCCESS = number of successfully enrolled certificates
SCEP_TIMEOUT = number of certificates where update failed due to server timeout
SCEP_SKIPPED = number of certificates that do not need to be enrolled yet

Checking of certificates for expiry is a very cheap operation, lasting only some tenths of
a second and thus can be done regularly.

Only the actual enrolment of new certificates takes some time and can take well over a
minute, although it is not very computing intensive, but creating a new private key
requires enough random data to be available.

Attribute Value (Default) Description

name Name of the section. The config file will be named according to
this value. This parameter must be first in the section.

start Defines whether this section is active.

check Define the time table for certificate checking and enrollment.
Basically, these values are entries into the crontab and have the
same syntax. The cron daemon is started, even if [crontab]
start=no is set.
Additionally, these values can be defined:
- daily TIME: check every day at specified time.
- weekly DAY TIME: check every week on DAY at TIME
- Defined events: ppp-up when 3G/4G connection goes up
(ppp only), mip-up when MobileIP tunnel goes up the first time,
dhcp <if> when interface <if> gets a lease, boot after
completion of boot process, wlan <if> when the wireless client
interface <if> connects to an AP.
Syntax: on EVENT
Examples:
check = 1 15 * * *
check = daily 9:30
check = weekly thursday 11:23
check = on boot
check = on wlan wlan0

action Predefined action to execute on successful enrolment:
-ipsec: reload all IPsec connections so they use the new
certificates.

AnyRover
:
16 November 2020
page 65 / 120

Attribute Value (Default) Description

directory /etc/certs/ipsec Directory to store the new certificates. A request can be started
with this directory empty; the CA certificates are then loaded
first.

days 7 Number of days before expiry that a new certificate shall be
created.

key_size Size in bit of the private key, if not yet present.
Possible values: 768, 1024, 2048

signature Algorithm for key signing.
One of md5, sha1, sha225, sha256, sha384, sha512

server URL of SCEP server. For Microsoft based servers, this looks like
http://<IPADDR>/certsrv/mscep/mscep.dll

virtual_host If set, the HTTP header is supplemented with a line
Host:<SERVERIP>. Only set to no if specifically required.

encryption Encryption to use when communicating with the SCPE server.
Possible values: des, 3des, blowfish

ca-file Name of the file to write CA certificate to. If multiple certificates
are included, the name is extended with -2, -3, ...
Additionally, a file name enc-<ca-file> is created.

password Challenge password for communication with SCEP server.

CA-DN Common Name of the CA certificate to use.

cert-file Name of the file to save the certificate to.

key-file Name of the file to save the private key to. Created with mode
0600.

Country
State
Location
Organization
OrgUnit
CommonName

Fields for Distinguished Name of certificate.

altname Alternative name of the certificate.

x509v3ext Additional parameters for X509v3 extensions.

4.2.39 [pelix]
The AnyRover can send position information directly to a Pelix server from LogObject.
Further functions with Pelix servers are not implemented yet.

Note that data transmitted to the Pelix server is encoded in a Pelix specific protocol, but
not encrypted. Encryption must be provided by some other means (e.g. IPsec tunnel).

Attribute Value (Default) Description

start Defines if this section is active or not

listen Define interface to receive GPRMC data.
Default: listen = tcp, 127.0.0.1:13181
For this to work, a configuration entry to send GPS data must be
present:
[gps]
target = 0,127.0.0.1:13181

target Defines IP address and TCP port of the Pelix server. Currently only

AnyRover
:
16 November 2020
page 66 / 120

Attribute Value (Default) Description

one server can be defined.
Example: target = 192.168.1.1:11310

source Source address and port to use when contacting a Pelix server.
Syntax: source = ipaddr[:port]
Examples:
source = 192.168.1.3
source = 192.168.1.3:12345

retry Timeout in seconds after a failed attempt until retry.
Default: 5

interval Timeout in seconds between two consecutive position
messages.
Default: 10

coordinates Define format of coordinates to submit to Pelix server.
Possitble values: CH1903, WGS84 microdegrees, WGS84
Default: WGS84 microdegrees

id ID of device to transmit to Pelix server. Usually the IMEI of the
modem. This must be configured manually until further notice.

username Username for login with Pelix server.

password Password for login with Pelix server.

retransmit Defines whether messages that are not acknowledged by the
Pelix server will be retransmitted.
Default: no

4.2.40 [dsl]

Attribute Value (Default) Description

start Defines if this section is active or not

mode dhcp Defines the dsl connection mode
Possible values: dhcp, pppoe
dhcp: For simple links where the client just makes DHCP.
(Swisscom: for private customers)
pppoe: For links where PPPoE is necessary.
(Swisscom: for corporate customers)
eth: The modem terminates the IP connection and plays
DHCP server for the AnyRover. This mode is not supported yet

layer2 PTM ATM or PTM
Modulation scheme G.Dmt, G.lite, T1.413 only support ATM.
Scheme ADSL2 and ADSL2+ support both ATM and PTM.
Scheme VDSL2 only supports PTM.

modulation ADSL2, ADSL2+,
VDSL2

Set modulation scheme for the line.
Only relevant if layer2 = PTM
Available modes:
- G.Dmt: „normal“ original ADSL
- G.lite: better noise immunity (longer lines), half data rate
- T1.413: north american standard (ANSI)

- ADSL2: up 25 – 138kHz, down 138 – 1104 kHz
- AnnexL: long lines (up to 7km), up 0 – 138 kHz, down 138 –
552kHz

- ADSL2+: up 25 – 138 kHz, down 138 – 2208 kHz
- AnnexM: up 25 – 276 kHz (doubled), down 276 – 2208 kHz

AnyRover
:
16 November 2020
page 67 / 120

Attribute Value (Default) Description

- VDSL2: fourth generation

bitswap yes Only relevant for G.Dmt, G.lite, T1.413. If set to yes, the modem
can adapt data rates to current quality of the line.

sra no Only relevant for ADSL2 and up. If set to yes, the modem can
adapt data rates to current quality of the line.

profile 12a, 17a, 30a VDSL2 profiles, only relevant if modulation = VDSL2.
Available profiles: 8a, 8b, 8c, 8d, 12a, 12b, 17a, 30a
The profile defines the frequency band usage on the line.
All profiles have

Downlink D1: 0.138 – 3.75 MHz
Uplink U1: 3.75 – 5.2 MHz
Downlink D2: 5.2 – 8 MHz

Additionally:
profile 12: U2 8.5 – 12 MHz
profile 17: U2 8.5 – 12 MHz, D3 12 – 17.664 MHz
profile 30: U2 8.5 – 12 MHz, D3 12 – 23 MHz, U3 23 – 30 MHz

us0 yes Only relevant for modulation = VDSL2.
If set, Uplink band 0 (25 – 138 kHz) is used.

ipaddr (dhcp) IP address of the DSL device. The interface is called dsl0.
The syntax is identical to the parameter ipaddr in the [system]
section.

username user (pppoe) Username for PPPoE login

password pass (pppoe) Password for PPPoE login

defaultroute yes (pppoe) Define whether to set a default route through DSL
modem

defaultmetric 70 (pppoe) Metric of the default route (if set)

4.2.41 [8021x]
AnyRover supports wired 802.1X authentication on the switch ports. The switch itself does
not support 802.1X, so it is implemented in the Linux system. Preferably, the ports are
separated into VLANs, and 802.1X is configured on the respecitve VLAN interface.

The parameter name must be placed first in the section, and the interface that has
802.1X configured must contain the keyword 8021x in its ipaddr parameter; otherwise, the
8021x section has no effect.

AnyRover can operate both as authenticator or as supplicant.

802.1X on WLAN connections is directly configured in the respective WLAN section, this
section is only for wired 802.1X.

Attribute Value (Default) Description

name Name of the interface this section is for.
Additionally, the respective interface must contain the keyword
8021x in its ipaddr= parameter.

AnyRover
:
16 November 2020
page 68 / 120

Attribute Value (Default) Description

Possible values: eth0, vlanX, brX

mode Possible values: authencticator, supplicant

eapol_version Current version is 2, version 1 can be set here.

port_mode Define the mode the port is in when configured as
authenticator. Possible values:
- single-host: only one single client can authenticate at a time. If
a second client successfully authenticates, the first client is
deauthenticated.
- multi-host: After one client has successfully authenticated, all
connected clients can use the port.
- multi-auth: Multiple clients can authenticate, and only
authenticated clients can use the port.

key_management Key management protocol.
Possible values: PSK, EAP

eap EAP protocol.
Possible values: PEAP, TLS, TTLS, MD5, MSCHAPV2

pre_shared_key Pre-shared key for PSK authentication.

identity Identity string for EAP authentication.

password Password for EAP authentication.

phase1 Additional arguments for phase 1 (outer tunnel) authentication.
Example: phase1 = peapver=0

phase2 Additional arguments for phase 2 (inner tunnel) authentication.
Example: phase2 = auth=MSCHAPv2

root Root certificate. References a [certificate] section.

cert Client certificate. References a [certificate] section.

key Client key. References a [certificate] section.

mab MAC authentication bypass. The MAC address listed here does
not have to authenticate.
Can appear multiple times.

source_addr Source IP address the authenticator uses to communicate with
the Radius server.

radius_ipaddr IP address that is used as NAS-IP-Address in the Radius request.

radius_server IP address and port of the Radius server. The parameter can
appear multiple times, the different servers are then tried one
after the other until one replies.
Example: 192.168.1.1:1812

radius_secret Shared secret needed to authenticate with the Radius server.

radius_accounting IP address and port of the accounting server. The parameter
can appear multiple times, the different servers are then tried
one after the other until one replies.
Example: 192.168.1.1:1813

radius_acct_secret Shared secret needed to authenticate with the accounting
server.

radius_retry Timeout after which the authenticator tries to reach the first
Radius server again.

AnyRover
:
16 November 2020
page 69 / 120

5 Support

After power on, the AnyRover automatically starts all services and is ready after a short
time. There are different mechanisms to interact with the system to do maintenance and
development of new features.

5.1 Lock files

With lock files, the system can be prevented from using certain resources. Lock files are in
the directory /var/lock, and the only relevant fact about the lock file is its existence, the
contents of the file is irrelevant. Lock files can be genareated using the command touch.

Lock file Protected resource

/var/lock/sms The SMS daemon no longer accesses the modem to read and send SMS.

/var/lock/ppp The ppp daemon does not start new connections. Established connections are not
terminated automatically.

/var/lock/ppp0 The ppp daemon creates this file when the ppp connection is up.

5.2 Helper programs

The AnyRover contains several helper programs that can be helpful when looking for
errors or debugging new programs. They can be used as well in user defined scripts.

5.2.1 Modem status
The program at (which is not the Unix service with the same name) can be used to send
AT commands to the modem and watch the answer. The program needs one or more AT
commands as parameters. The AT commands are then passed in the given order to the
modem, and all answers are put on stdout. The command at without arguments displays
the usage.

5.2.2 Sending SMS
The AnyRover can – if a suitable SIM card is inserted – send SMS. The program sms is
available for this. Incoming SMS cannot be viewed directly, but they are logged in
/var/log/messages if the central service could not interpret them.

5.2.3 Central service
Many tasks are take care of by the central service. The service feeds the watchdog,
monitors the GPI pins, processes GPS data, controls the modem and handles incoming
SMS.

Using the program cablynxctrl, the central service can be controlled. With help all
available options are listed

AnyRover
:
16 November 2020
page 70 / 120

5.2.4 GPIO
With the program gpio, the GPI pins can be read and the GPO pins set. This does not
apply to the pins controlled by the central service.

Usage: gpio ionumber [val]

If val is 1 or 0, the gpio is set to output and written. If val is ? the gpio output is read.
Without val the gpio is set to input and read. gpio without arguments lists all options.

The inputs and outputs on the multi-purpose connector are controlled by the central
service and cannot be set and read using gpio. In the config file, actions can be defined
that are executed when input states change. The output can be set via such actions, or
manually using the command cablynxctrl.

5.2.5 AD converter
The AnyRover contains several AD converters. The program adc reads the values of the
converters.

5.2.6 Acceleration sensor
If the AnyRover contains a gps module with dead reckoning function, the values of the
acceleration sensor can be read with accel.

5.2.7 Datcom
This tool logs in on a datcom gateway and transmits the current gps position. datcom -h
list the description and options

5.2.8 PIC-Tool
The AnyRover contains a pic which stores some values that are configuration
independent. With pic -option val values can be read and written. With pic -h all options
are displayed.

5.3 Log files

The system writes important messages to the system log file. The log files are cleared
regularly to prevent fill-up of the flash (hard disk).

The main log file is /var/log/messages, new messages are appended at the end. The
command

tail /var/log/messages

can be used to show the last lines of the log files. The switch „-f“ causes the program to
keep reading the files, so any new messages are shown immediately. When using „-F“,
tail even stays on the file after a log file rotation has taken place.

AnyRover
:
16 November 2020
page 71 / 120

6 Sample configurations

This section presents and explains some sample configurations for different situations. In
the samples, only the lines relevant for the actual situation are printed, the other lines of
the configuration files are assumed to be the default configuration.

Comments in the config file are omitted here.

In the examples, the IP addresses 172.16.X.Y – 172.24.X.Y are assumed to be public, while
the addresses 10.X.Y.Z and 192.168.X.Y are assumed to be private.

Values in capital letters and angle brackets (e.g. <YOUR_KEY>) must be replaced with
the correct values.

6.1 Permanent IPsec tunnel to the network

The AnyRover must maintain a permanent connection through a 3G link to the corporate
network. Authentication is with a pre shared key, identification works using the host
name.

A SIM card is used that obtains a local IP address with the provider and thus is behind a
NAT gateway. The IPsec server has the public IP address 172.16.1.1, the internal corporate
network is 10.0.0.0/8.

All other internet accesses are routed directly through the 3G link.

[system]
hostname = client1.example.org
[firewall]
accept = ppp0,udp,500
accept = ppp0,udp,4500
accept_fw = eth0,,,
[chat_script]
apn = <YOUR.PROVIDER.APN>
[ipsec]
start = yes
remote = 172.16.1.1
local_net = eth0
remote_net = 10.0.0.0/8
natt = yes
my_identifier = fqdn, client1.example.org
peers_identifier = fqdn, server.example.org
psk = <YOUR_PRE_SHARED_KEY>

AnyRover
:
16 November 2020
page 72 / 120

6.2 IPsec tunnel on request

The 3G link and the IPsec tunnel are only built upon request. If there is no traffic in the
tunnel for 5 minutes, the connection is terminated. This examples relies on the
configuration „Permanent IPsec tunnel to the network“.

[ppp]
option = demand
option = nopersist
option = idle 300
[ipsec]
dpd = 0

6.3 IPsec server with multiple clients

An IPsec server has to accept connections from multiple clients. Authentication is
established with certificates. The server has the public IP address 172.16.1.1/24 on VLAN1,
the clients connect on the 3G network and are natted. The client subnets are in the
range 192.168.X.0/24, the server subnet on VLAN2 is 10.0.0.0/8.

Server config:

[system]
ipaddr =
[switch]
start_vlan = yes
vlan1 = 1
ipaddr1 = 172.16.1.1/24
vlan2 = 2,3,4
ipaddr2 = 10.0.0.1/8
[firewall]
accept = vlan1,esp,
accept = vlan1,udp,500
accept = vlan1,udp,4500
[ipsec]
remote = any
local = eth0
local_net = 10.0.0.0/8
remote_net = any
remote_range = 192.168.0.0/16
natt = yes
my_identifier = asn1dn, C=ch, ST=zh, L=zrh, O=AW, OU=AnyRover, CN=Server, E=em@i.l
peers_identifier = asn1dn, C=ch, ST=zh, L=zrh, O=AW, OU=AnyRover, CN=*, E=em@i.l
auth_method = cert
[certificate]
name = ipsec-cert
type = pem
-----BEGIN CERTIFICATE-----
MII...
-----END CERTIFICATE-----

[certificate]
name = ipsec-root

AnyRover
:
16 November 2020
page 73 / 120

type = pem
-----BEGIN CERTIFICATE-----
MII...
[certificate]
name = ipsec-key
type = pem
-----BEGIN RSA PRIVATE KEY-----
MII...
-----END RSA PRIVATE KEY-----

Clients:

[system]
ipaddr = 192.168.X.1/24
[firewall]
accept = ppp0,esp,
accept = ppp0,udp,500
accept = ppp0,udp,4500
[ipsec]
remote = 172.16.1.1
local_net = eth0
remote_net = 10.0.0.0/8
natt = yes
my_identifier = asn1dn, C=ch, ST=zh, L=zrh, O=AW, OU=AnyRover, CN=ClientX, E=em@i.l
peers_identifier = asn1dn, C=ch, ST=zh, L=zrh, O=AW, OU=AnyRover, CN=Server, E=em@i.l
auth_method = cert
[certificate]
...

6.4 2 local subnets with NAT

The AnyRover has 2 local subnets A (Ports 1 and 2, 192.168.1.0/24) and B (Ports 3 and 4,
10.1.1.0/24). Access from A to B is possible, traffic is natted. Access from B to A is
prohibited.

[system]
ipaddr =
[switch]
start_vlan = yes
vlan1 = 1,2
ipaddr1 = 192.168.1.1/24
vlan2 = 3,4
ipaddr2 = 10.1.1.0/24
[firewall]
nat = vlan2
accept_fw = vlan1,,vlan2

6.5 Wireless client

The AnyRover connects to a wireless access point and shares the connection with local
clients. The access points runs WPA2, PEAP, and TKIP, the SSID is broadcast.

AnyRover
:
16 November 2020
page 74 / 120

[firewall]
nat = wlan0
accept_fw = eth0,,wlan0
[wlan]
start = yes
country = <YOUR_2_LETTER_COUNTRY_CODE>
ssid = <YOUR_SSID>
identity = <YOUR_USERNAME>
password = <YOUR_PASSWORD>

If the connection is not successful, it might be necessary to set

eapol_version = 1

6.6 Roaming between WLAN and 3G

The AnyRover connects to a wireless network. Whenever WLAN is not available, it
switches to 3G. As long as WLAN is available, the 3G link is not active.

The AnyRover verifies whether WLAN is still available by trying to renew the DHCP lease
every 20 seconds. If the DHCP server can be configured with a lease time of only a short
time, the sections [daemon] and [script] can be omitted.

[ppp]
defaultmetric = 20
option = demand
option = nopersist
option = idle 30
option = holdoff 15
[daeamon]
start = /etc/scripts.d/local/wlan_roaming.sh
[script]
name = WLAN Roaming
file = /etc/scripts.d/local/wlan_roaming.sh
mode = 755
#!/bin/sh
IFACE=wlan0
while true; do
 sleep 20
 if [-r /var/run/dhcpcd-${IFACE}.pid]; then
 dhcpcd -n ${IFACE}
 fi
done
[wlan]
start = yes
ipaddr = dhcp default timeout:15

6.7 Wireless access point with DHCP server

The AnyRover runs as wireless access point, using WPA2, PEAP, and CCMP. Clients obtain
an IP address using DHCP. Access to the AnyRover on the wireless interface is prohibited.

AnyRover
:
16 November 2020
page 75 / 120

The certificates can be generated using the script /home/config/bin/cert.

[dhcp]
name = wlan0
start = yes
dhcpd_start = 192.168.1.11
dhcpd_end = 192.168.1.254
[firewall]
accept = wlan0,udp,67
accept = wlan0,udp,68
[wlan]
start = yes
mode = ap
country = <YOUR_2_LETTER_COUNTRY_CODE>
ssid = <YOUR_SSID>
ipaddr 192.168.1.1/24
pairwise = CCMP
channel = 1
authentication = eap_server
[authentication]
name = eap_server
start = yes
standalone = no
eap_phase1_id = PEAP
eap_phase2_id = MSCHAPV2 <USERNAME1>:<PASSWORD1>
eap_phase2_id = MSCHAPV2 <USERNAME2>:<PASSWORD2>
[certificate]
name = eap_ca_cert
type = pem
-----BEGIN CERTIFICATE-----
MIICWwIBAAKB...
-----END CERTIFICATE-----
[certificate]
name = eap_server_cert
type = pem
-----BEGIN CERTIFICATE-----
MIICWwIBAAKB...
-----END CERTIFICATE-----
[certificate]
name = eap_server_key
type = pem
-----BEGIN CERTIFICATE-----
MIICWwIBAAKB...
-----END CERTIFICATE-----

6.8 Multiple client connections over IPsec using PSK

Multiple identical clients connect over IPsec to the central server. Each client has its own
small local network (192.168.2.X/30), which is reachable through the tunnel.
Authentication is done using pre-shared keys, identification is by hostname.

The clients connect over the 3G link and are located behind the NAT gateway of the
provider. The tunnel must thus be initiated by the client.

AnyRover
:
16 November 2020
page 76 / 120

The server has the public IP address 172.16.1.1 (vlan1) and the internal net 192.168.1.0/24
on vlan2.

Client configuration:

[system]
ipaddr = 192.168.2.1/30
[ipsec]
start = yes
remote = 172.16.1.1
local_net = eth0
remote_net = 192.168.1.0/24
tunnel = :/
natt = yes
my_identifier = fqdn, client1.example.org
peers_identifier = fqdn, router.example.org
psk = <MY_SECRET_PRESHARED_KEY>
ph1_hash_alg = sha1
ph2_hash_alg = sha1

AnyRover server configuration:

[system]
ipaddr =
[switch]
start_vlan = yes
vlan1 = 1
ipaddr1 = 172.16.1.1/24
vlan2 = 2,3,4
ipaddr2 = 192.168.1.1/24
[ipsec]
start = yes
setup = route
remote = any
local = vlan1
local_net = vlan2
remote_net = any
remote_range = 192.168.2.0/24
tunnel = :/
natt = yes
my_identifier = fqdn, router.example.org
comment out all peers_identifier lines
psk = <MY_SECRET_PRESHARED_KEY>
ph1_hash_alg = sha1
ph2_hash_alg = sha1

Server configuration for a Cisco router:

hostname router
ip domain name example.org
crypto isakmp policy 1
 encr aes 256
 authentication pre-share
 group 2
crypto isakmp key <MY_SECRET_PRESHARED_KEY> address 0.0.0.0 0.0.0.0
crypto isakmp identity hostname
crypto ipsec transform-set ANYROVER esp-aes 256 esp-sha-hmac
crypto dynamic-map ANYDYNMAP 10

AnyRover
:
16 November 2020
page 77 / 120

 set transform-set ANYROVER
 set pfs group2
 match address 110
crypto map ANYMAP 10 ipsec-isakmp dynamic ANYDYNMAP
interface FastEthernet0/0
 ip address 172.16.1.1 255.2552.255.0
 crypto map ANYMAP
interface FastEthernet0/1
 ip address 192.168.1.1 255.255.255.0
access-list 110 permit ip 192.168.1.0 0.0.0.255 192.168.2.0 0.0.0.255

6.9 Sending files over E-mail

The AnyRover has to regularly send log files via e-mail. This script is started by cron job
every thursday at 1:04am.

[crontab]
entry = 4 1 * * 4 /etc/scripts.d/logmailer/mkmail.sh
[script]
name = log-mailer
file = /etc/scripts.d/logmailer/mkmail.sh
mode = 755
#!/bin/sh
for i in /DIRECTORY/CONTAINNG/LOGFILES/*;do
makemime -a "Content-Disposition: inline" -a "Subject: MAIL SUBJECT" -a "Date: `date
-R`" -c application/octet-stream $i |
awk -F\" '/boundary=/ && !b { b = $2; }
 /^$/ && !a++ {
 print "\n--" b;
 while (getline l < "/etc/scripts.d/logmailer/mail.txt") print l;
 } 1' |
sendmail -t -f SENDER@AD.DR -S SMTP_SERVER -auUSERNAME -apPASSWORD RECEIVER@AD.DR
rm $i
done
[script]
name = mail-content
file = /etc/scripts.d/logmailer/mail.txt
mode = 644
Content-Type: text/plain
Content-Transfer-Encoding: 7bit
Please find attached the newest log file.

6.10 IPsec server for Cisco VPN clients

The AnyRover is configured as a server for Cisco VPN clients. Authentication must be
done using certificates, using pre-shared keys is not possible (reason: the Cisco VPN client
uses aggressive mode with pre-shared keys, which is not supported by the AnyRover for
security reasons).

Currently, only one connection at a time is possible. Extension for multiple concurrent
connections will be implemented later.

AnyRover
:
16 November 2020
page 78 / 120

This method also works for connections from an iPhone. In this case, the server on the
iPhone must be given as a hostname, and the certificate on the AnyRover must have this
hostname in the CN field.

To import the certificates on the iPhone, the CA certificate has to be given as a .pem file,
and the client certificate and client key have to be packed in a .p12 file. The .p12 file
can be generated with this command:

openssl pkcs12 -in client-cert.pem -inkey client-key.pem -out client.p12 -export

The command asks for an export password, which has to be set, because the iPhone
cannot handle .p12 files without password protection.

[system]
nameserver = 172.17.100.200
nameserver = 172.21.21.3
[ipsec]
start = yes
setup = add
remote = any
local = eth0
local_net = 0.0.0.0/0
remote_net = any
remote_address = 192.168.2.1
tunnel = /
natt = yes
tries = 1
my_identifier = asn1dn,
peers_identifier = asn1dn,
auth_method = xauth-cert
xauth = server
xauth_id = iphone:iphone
ph1_lifetime = time 24 hour
ph2_lifetime = time 1 hour
dh_group = 5
pfs_group =

Finally, the certificates must be given in the respective [certificate] sections.

6.11 Setting GPO

The general purpose output (GPO) is must be switched on when a certain file is created,
and switched off if the file is deleted.

The example uses the file /var/lock/ppp0 which only exists if the 3G connection is online.

[daemons]
start = /etc/scripts.d/output.sh
[script]
name = output
file = /etc/scripts.d/output.sh
mode = 755
#!/bin/sh

AnyRover
:
16 November 2020
page 79 / 120

file=/var/lock/ppp0
while true; do
 test -r ${file}
 j=$?
 if ["${j}" != "${i}"]; then
 i=${j}
 test ${i} -eq 0 && cmd=out_on || cmd=out_off
 echo ${cmd} | cablynxctrl
 fi
 inotifyd : `dirname ${file}`:nd &>/dev/null
done

AnyRover
:
16 November 2020
page 80 / 120

A Contact

A.1 Responsible persons

A.1.1 Commercial
Wim van Moorsel, AnyWeb AG <wvm@anyweb.ch> +41 58 219 11 03

A.1.2 Technical project lead
Marco Wirz, AnyWeb AG <mwi@anyweb.ch> +41 58 219 11 26

A.1.3 Support and maintenance
Hardware: Christian Bürki, Cabtronix AG <buerki@cabtronix.ch> +41 44 804 74 36
Software: Marco Wirz, AnyWeb AG <mwi@anyweb.ch> +41 58 219 11 26

B Default configuration file

##
Global configuration file for AnyRover
##
Index
========================
(1) Addressing
(2) Switch
(3) System Time
(4) Watchdog
(5) Crontab
(6) GPIO
(7) GPS
(8) SMS
(9) Modem
(10) USB ports
(11) DHCP (server and relay)
(12) FTP
(13) TFTP
(14) Firewall
(15) DynDNS
(16) PPP
(16a) chat scripts
(16b) WAN
(17) IPsec
(17a) IPsec Certificates
(18) OpenVPN
(18a) Custom client config files
(18b) OpenVPN Certificates
(19) Tunnel
(20) Bridge
(21) Message of the day
(22) User daemons
(23) Scripts
(24) Web server
(25) WLAN
(25a) WLAN client Certificates
(26) Authentication (EAP/Radius server)
(26a) Server Certificates
(27) OSPF
(28) SNMP
(29) DNS
(30) Serports
(31) OpenConnect VPN
(32) Mobile IP
(33) SCEP
(34) Pelix
(35) DSL
(37) IEEE 802.1X Port security
(37a) 802.1X Certificates

###
##
all entries are of the form
attribute = value
default values as indicated in the comments are applied if
the attribute is not set in the config file

[system]
##
(1) Addressing
##

Network configuration
The value can be an IP address/prefix or addr/mask pair, or dhcp
When using a static address, the parameter mtu:VALUE can be added
to set the MTU of the interface.
When using dhcp, these parameters are valid:
default set default route on this interface, as advertised
by the dhcp server
metric:M set metric of default route to M (default: 0)
timeout:T set timeout to T (default: 15s)
dns ask the dhcp server for DNS server addresses and replace
the currently configured servers with these.
hostname ask the dhcp server for and set hostname.
This only works if the current hostname is localhost.
nolinklocal Do not use link local addresses (169.254.X.Y)
noarp Do not check address using ARP. Implies nolinklocal.
vendor Set Vendor Class Identifier string. Probably only
needed for DSL links.
To set an interface without an IP address, use - for the address.
To enable 8021x on this interface (both authenticator and supplicant),
the parameter 8021x can be added. All 802.1X parameters are then
configured in a separate [8021x] section.
#ipaddr = 192.168.1.3/24 mtu:1496
#ipaddr = 192.168.1.3 255.255.255.0
#ipaddr = dhcp
ipaddr = 192.168.1.3/24

The optional fifth ethernet port can be configured with this
parameter. The syntax is identical to the parameter ipaddr above.
#ipaddr_wan = 192.168.2.1/24
#ipaddr_wan = dhcp default nolinklocal metric:30

Loopback addresses
The loopback interface has the address 127.0.0.1 by default.
With this option, additional addresses can be added to the
loopback interface.
#loopback = 1.1.1.1/32

Routing
gateway: ip address of default gw.
When configuring some interfaces using dhcp, they can
be told to set the default route, so this option is

only used to set the default route through a statically
configured interface.
The parameter metric:M can be appended to specify the routing metric
#gateway = 192.168.1.1
#gateway = 192.168.1.1 metric:10
gateway =

Policy based routing
policy = SELECTOR ACTION
When SELECTOR matches, the routing decision is based on ACTION.
SELECTOR can be one of
- from PREFIX
- to PREFIX
- tos TOS
- dev DEVICE
ACTION can be one of:
- table NUM
- prohibit | reject | unreachable
The table number can be used again in static_route below, the
number may be in the range from 1 to 32765.
(0, 32766, and 32767 are already defined by the system)
HINT: IPsec uses tables 200 and 220, don't use them.
#policy = from 1.1.1.1 table 300

Static routes
Static routes are inserted into the routing table after all
interfaces, VLANs and bridges are configured.
Only IPsec and OpenVPN are started later so the OpenVPN interface
is not available here.
static_route = [target][/prefix] [netmask] gateway [metric:M]
[table:T] [src:S]
if both prefix and netmask are omitted, the default class-based
prefix is chosen; if both are present, the prefix is ignored.
If no target is given, the default route is set.
gateway can either be an IP address or the name of an interface.
A gateway IP address must already be reachable with the existing
routing table, an interface must exist.
table:T assings the route to the routing table T as created with
the policy option above.
With the src:S parameter, the source address can be set for this
route.
The source address must be set on one interface of the system.
#static_route = 192.168.92.0/24 192.168.1.3
#static_route = 192.168.93.0/24 ppp0 table:300
#static_route = 192.168.94.0 255.255.255.0 vlan1 metric:10
#static_route = 192.168.93.0/24 ppp0 table:300 src:192.168.1.3

Proxy ARP
List of interfaces (space separated) that have proxy arp enabled.
#proxy_arp = eth0 vlan1
proxy_arp =

hostname for the system. (default: localhost)

The hostname can also be set by the DHCP client on any interface.
If this is desired, it has to be set here to localhost (and configured
on the respective dhcp client).
hostname = anyrover

name servers to use for DNS lookups. Up to three name servers can
be specified, additional entries are ignored.
These name server entries can be overridden by the dhcp entries
on the respective interfaces, which has to be configured on the
respective dhcp client.
The first two name servers are also used in IPsec to hand out to
clients when they make a mode config request. One example where
this is necessary is when using an iPhone as VPN client.
nameserver = 193.5.23.1
nameserver = 193.247.204.1

Search domain.
When doing name lookups, if the name is not found, this suffix
is appended and name is tried again.
#domain = anyweb.ch

WINS server to hand out to IPsec clients with mode config requests.
Up to two wins servers can be specified.
WINS server (as well as name server) can only be set globally for
all IPsec connections, that is why these parameter is not in the
ipsec section.
#winsserver = 192.168.84.13

##--
Logging
##--

If log_server is specified, syslog messages are sent to this address
(default: none)
#log_server = 192.168.1.1

Log level. All log-messages with log level less than this value are
logged to /var/log/messages. By default, everything is logged.
#log_level = 6

Log file. By default, the system log file is /var/log/messages.
This file is on the RAM disk, so upon reboot, everything is lost.
Using this parameter, another file can be specified as the log file.
If only a file name is given, the file will be placed in /var/log/
If the path does not exist, it will be created.
#log_file = /opt/log/messages

Log file rotation. The log file is automatically rotated whenever it
reaches a certain size (default: 200KB), and older rotated files are
deleted (default: one old file is kept).
These two parameters define the size in KB the log file must have
to be rotated (default: 200KB), and how many old log files are kept
(default: 1)

#log_rotate_size = 200
#log_rotate_files = 1

##--
System updates
##--

tftp_server: default entry for system updates as user config
tftp_server = 192.168.1.1

##--
Mount partitions
##--

Mount additional partitions.
Syntax: device, filesystem, mountpoint [, option [, option]]
The mount point will be created if not already present.
Options as known from /etc/fstab. Option noatime is set by default.
More options: rw (default), ro, [no]exec, ...
#partition = /dev/mtdblock4, jffs2, /media/log, noexec

[switch]
##
(2) Switch
##

enable the switch? (default: yes)
If set to no, the external ethernet ports will not work.
start = yes

Power over Ethernet (PoE)
Ports 1 and 3 support PoE
The PoE modules can be enabled
poe1 = no
poe2 = no

Switch ports
Each port can be set to auto-negotiation, or fixed on
10/100M half/full duplex.
ports = port1,port2,port3,port4
portX = 0,1,2,3,4
0: 10M, half duplex
1: 10M, full duplex
2: 100M, half duplex
3: 100M, full duplex
4: auto negotiation
omitted values are set to 4 (auto negotiation).
Example: ports = 1,,2,4
Here, port1 is set to 10Mfull, port2 to auto, port3 to 100Mhalf,
and port4 to auto
ports =

The switch ports can individually be disabled. The parameter takes

a comma separated list of port numbers to be disabled.
All ports not mentioned here are enabled.
This only works if start_vlan is set to yes.
#port_disable = 3, 4

VLANs: it is possible to define up to 4 VLANs. Every switch port
can be in one of the VLAN, or left as it is.
Port 5 (to the processor) is in all VLANs.
vlanX is a list of switch ports to participate in this VLAN
ipaddrX defines the IP address of VLAN X. The syntax is identical
to the parameter ipaddr in the system section.
start_vlan = no
#vlan1 = 1,2,3
#ipaddr1 = 192.168.1.3 255.255.255.0
#ipaddr1 = 172.24.34.1 255.255.0.0
#vlan2 = 4
#ipaddr2 = dhcp default nolinklocal metric:20
#ipaddr2 = 192.168.3.3 255.255.255.0

VLAN Trunking:
It is possible to configure VLAN trunks on external switch ports.
Example: A trunk on port 3 is defined with
trunk = 3
If one of the 4 internal vlans above contains the trunk port in its
port list, the packets from the other ports will be sent over the
trunk with the respective tag. If the list does not contain the port,
it will never be sent over the trunk.
#trunk = 3

Additional vlan interfaces are configured as usual:
ipaddrX = ...
X must have the value 5 or larger. All such interfaces can only
communicate through trunk ports, and packets are properly tagged.
At most 16 different interfaces can be configured (including the
internal ones ipaddr1..4).
#ipaddr8 = 192.168.8.1/24
#ipaddr9 = dhcp default metric:90 nolinklocal dns

Rebind dhcp lease when a network cable is plugged in a switch port
Only the dhcp client on the corresponding switch port is rebound.
dhcp_rebind = yes

internal signals, don't change
reset = 50
ps1 = 123
port_poe1 = 53
port_poe2 = 54
ethled1 = 1117
ethled2 = 1118
ethled3 = 1119
ethled4 = 1120

[time]

##
(3) System time
##

Set timezone info
timezone = zone
zone is the name of a file in /usr/share/zoneinfo/
Some possible values: CET, GMT (includes Daylight saving time),
UTC (no daylight saving time), EET, EST, ...
Alternatively, specifiy location, e.g. Europe/Zurich,
America/Vancouver, Pacific/Auckland, ...
e.g. timezone = CET
timezone = CET

start ntp daemon? [yes|no] (default: yes)
This is needed both to synchronize to another time source
and to play ntp server ourselves.
If we are ntp server, enable port 123 in the firewall section
start = yes

What to use as source for the system time (default: gps)
gps: GPS receiver
ntp: ntp server
none: do not try to synchronize system time (but still let
others sync their clock after us).
time_source = gps

ntp_server is only used if time_source = ntp
ntp_server = pool.ntp.org

ntp_flags allows to restrict ntp service. List of flags,
separated by comma or white space.
The flags are appended to a line of the form
restrict default [ntp_flags]
Possible flags (see ntp.conf man page):
kod, limited, lowpriotrap, nomodify, noquery, nopeer, noserve,
notrap, notrust, ntpport, version
Recommended value: ntp_flags = kod nomodify notrap nopeer noquery
ntp_flags = kod nomodify notrap nopeer noquery

Allow local access to ntp status info.
Set this to yes to make "show ntp" work.
localaccess = yes

Additional options for ntp client.
Syntax:
#ntp_option = <whatever>

jump_clock: ntp daemon normally adjusts the clock once and in
one step after startup, but only if the difference is less
than 1000s. Otherwise, it exits with an error message.
If this parameter is set, then it jumps the clock once for
whatever it needs to get current time, even if the step is

larger than 1000s.
jump_clock = yes

check system clock with modem time. When there is a 3G connection,
the system clock is checked automatically from the modem time every
time, the connections is established.
default value: modemclock = yes
modemclock = yes

Display time sync on external LEDs.
LEDs will blink toghether if time was correct.
LEDs will show animation from left to right if time was synched.
default (if not given): yes
syncled = yes

[watchdog]
##
(4) Watchdog
##

start (and feed) the watchdog (default: yes)
start = yes

feed the watchdog every n seconds (default: 15)
interval = 15

internal signals, don't change
gpio_on = 122
gpio_feed = 124
cmd_on = 1

[crontab]
##
(5) Crontab
##

start cron daemon
Note: the cron daemon can be started by other functions.
But the actions described in this section are only activated
if start is set to yes here.
start = no

Cron log level: default value = 8
level = 8: log every call of command
level = 9: log only warnings and errors
#loglevel = 8

crontab entries
the crontab is parsed every minute
entry = min hour dayofmonth month dayofweek command [parameter]
entry = [0-59] [0-23] [1-31] [0-12] [0-7] command [parameter]
ranges can be given using /X, i.e. */2 means every two
a '*' means any

examples:
5 0 * * * cmd runs 5 min past midnight every day
15 14 1 * * cmd runs at 14:15 on the first of every month
0 22 * * 1-5 cmd runs every weekday at 22:00
23 0-23/2 * * * cmd runs daily at 0:23, 2:23, 4:23, ... , 22:23
5 4 * * sun cmd runs every sunday at 5:04
0 15 1 * 2 cmd runs at 15:00 on the first of every month and
on tuesday
#entry = 0 0 * * * echo "It's midnight, beware of ghosts!"

[gpio]
##
(6) GPIOs
##

defines actions to perform when the GPIO signals change or
the reset or mode button is pressed
##
syntax:
{button|mode} = time, action
{gpio} = ([time,]action1), ([time,]action2)
{gpio}: [ignition|inputX]
where X is the number of the input port
The CabLynx Eco / AnyRover has 3 input ports
time is in seconds
##
Description:

button, mode:
action is executed when the button is pressed longer than time
##
GPIO:
action1 is performed when the line is externally set to high
action2 is performed when the line is released (or set to low)
(if the line is not connected, the value is low)
##
if time is set, the action is executed after time seconds
##
the actions can be any shell command (but must not contain '(' and
')')
##
predefined actions:
- OFF: power the system down. This only works if the system is
powered through the multi-purpose connector and the
ignition
signal is deasserted. After power down, the system boots
again
when ignition is asserted.
Before shutting down, all scripts in
/etc/scripts.d/shutdown.d/
are executed.
- CANCEL: cancel a running OFF countdown
- RESET: resets the config (i.e. copy cablynx.conf.orig to

cablynx.conf)
- REBOOT: reboot the system
- HALT: halts the system (will reboot eventually because of
watchdog)
- MOUNT: mount all USB drives (usually done automagically)
- UMOUNT: unmounts all USB drives
- OUT_ON: switch GPO on
- OUT_OFF: switch GPO off
- SMS_STATUS: send information about all GPI pins as SMS back to the
sender of the command. Only works in the SMS section.

actions for the Reset Button
button = 2, /bin/dd if=/etc/conf.d/cablynx.factory of=/etc/cablynx.conf
button = 5, /bin/touch /etc/reset && sync && /sbin/reboot -d 4
button = 10, echo resetalg | cablynxctrl

#mode = 2, /etc/scripts.d/local/test.sh

actions for ignition signal
ignition = (/usr/bin/logger "Ignition on"), (/usr/bin/logger "Ignition
off")

ign_boot: Tell the system what to assume about the ignition signal
upon boot. Depending on this value and the current state of the
ignition signal, an edge is immediately detected, e.g. if set to 1,
and ignition is on when the system starts, it will immediately
detect a positive edge and perform the corresponding action.
Possible values;
0 (or unset): read current value of ignition upon start
1: assume that ignition was off during boot
2: assume that ignition was on during boot
#ign_boot = 2

actions for input signals
input1 = (/usr/bin/logger "input 1 on"), (/usr/bin/logger "input 1 off")
input2 = (/usr/bin/logger "input 2 on"), (/usr/bin/logger "input 2 off")
input3 = (/usr/bin/logger "input 3 on"), (/usr/bin/logger "input 3 off")

Hysteresis for input signals
If not defined, 0 is assumed.
These parameters must appear after the respecitve inputX above.
Syntax: hysteresis[X] = positive[, negative]
X = number of input (1-3), omit for ignition
positive and negative values are number of previous samples that
must have the same input value for the edge to be detected.
One sample is taken every 250ms.
If negative value is not given, the same value as for the positive
edge is assumed.
Examples:
hysteresis = 0: as soon as a new value is detected on the input, the
configured action is executed (behaviour in earlier versions).
hytseresis = 2, 3: on a positive edge, 3 consecutive samples (i.e.
two previous samples plus the current one) must be detected before

the action is executed. This introduces a delay of 500ms compared
to the default case (histeresis = 0).
On a negative edge, 4 consecutive samples must be found, introducing
a delay of 750ms.
#hysteresis = 1
#hysteresis1 = 1
#hysteresis2 = 1
#hysteresis3 = 1

internal signals, don't change
gpio_ign = 46
###
GPIO Port nums for AnyRover / CabLynx Eco
gpio_in1 = 30
gpio_in2 = 29
gpio_in3 = 28
gpio_off = 126
###
gpio_but = 39
gpio_mode = 41
power and status led
gpio_power = 58
gpio_status = 87

[gps]
##
(7) GPS
##

start the GPS relay daemon (default: no)
start = yes

start gpsd program? (default: no)
start = yes needs to be set for gpsd to be started.
"run_gpsd = yes" does not imply "start = yes"
run_gpsd = no

gpsd port to listen for TCP connections (default: 2947)
don't forget to open the port in the firewall section
gpsd_port = 2947

verbosity level of gpsd. 0=quiet (default: 0). The higher this
value, the more messages gpsd will send to syslog.
cf. documentation of gpsd
gpsd_debug = 0

AssistNow: Send current almanac and ephemeris data to GPS receiver
This speeds up time to first fix.
The data in the file is only valid for a short period of time (days),
so make sure the file is always current.
If a file is specified here, it will be loaded into the GPS receiver
upon system boot.
This can also be done later through the cablynxctrl utility.

#assist_now = /etc/gps/current_1d.alp

Targets to send GPS data to.
- {tcp|udp}_target actively connect to the target host
- tcp_server waits for incoming connections (don't forget to open
the port in the firewall section)
- Default target port is 13179.
- If the source address is omitted, the address of the interface
on the route to the target is used. Setting a different source
address is required when working with IPsec tunnels, since only
data originating in the internal net will be sent through the
tunnel. To send the GPS data through the tunnel, the source
must be set to eth0.
- If the source port is omitted
- tcp uses a random source port
- udp uses source port 13179
- serial_target sends data to serial port
- file_target writes data to a file. If maxsize is given (in bytes),
then the file will be rotated and gzipped once it reaches this size
(i.e. when the file size is greater than maxsize, which is only
checked every 10 seconds). With the parameter rotate, the number
of old files to keep can be specified. rotate must be < 100.
If the logfile is on the root partition, then file size is limited
to 10MB and rotate to 1, to prevent filling the partition.
It is recommended to write to an SD-Card or USB Stick, where those
limits do not apply.
hook defines a program that is executed whenever the file is
rotated. It gets the file name as parameter. If no hook is defined,
the file is compressed using gzip. If you want to keep the files
uncompressed, but without defining a hook script, use /bin/true
as hook.
Default values: maxsize = 4MB, rotate = 5
** don't use source ports for tcp unless you really really need it
udp_target = ret,target[:port][,[source[:port]|interface[:port]]
[,id:X]]
tcp_target = ret,target[:port][,[source[:port]|interface[:port]]
[,id:X]]
serial_target = ret,serport[,baudrate[,id:X]]
file_target = ret,filename[,maxsize[,rotate[,hook[,id:X]]]]
interfaces: eth[01] (ethernet), ppp0 (modem), vlanX
ret defines the return path, both for the GPS receiver and for
commands to the system.
ret=0 means that data is silently dropped.
ret=1 means the return path for this connection is open,
i.e. all data sent are forwarded to the GPS receiver.
ret=2 means the return path is open to send commands of the form
CBCTL:{command}, where command is one of the commands that
are valid within cablynxctrl.
ret=3 means that both the GPS and the CBCTL paths are open.
target,source can be IP addresses or host names. When using host
names, make sure the system is able to resolve them (e.g. via DNS).
id:X references a filter rule (see below) named X. If no rule is
given,

all messages are sent out on this connection.
#udp_target = 1,192.168.3.2:13179,ppp0
#tcp_target = 0,192.168.17.42:12345,192.168.3.1:13245,id:rule
#serial_target = 0,/dev/ttyS1,38400
#file_target = 0,/media/sda1/logfiles/gpslog.txt,4000000,5
#file_target = 0,/media/sda1/logfiles/gpslog2.txt,4000000,5,/bin/true
#tcp_server = ret[,source_ip[:port]|interface[:port]]

target filter rules
With this filter, the number of messages sent to each target (or
server)
can be limited. No new messages are created, so if the filter says to
send every 5 seconds, but the source delivers messages only every
15 seconds, only these messages from the source will be sent.
Syntax:
filter = ID[:profile]; PATTERN=time[,dist][;PATTERN=time[,dist]]
Multiple lines for the same ID are allowed. There is no difference
between specifying all rules on the same line and on different lines.
The ID is references from the (tcp|udp)_(target|server) attributes.
profile is a number (0, 1, 2, ...), to be able to define different
rules based on external variables. On start, profile 0 is applied.
Changing the profile is done through the cablynxctrl utility.
The message to be sent is matched against the PATTERN, and if it
matches,
the messages is only sent if the time or dist constraints match.
time (in seconds) defines the minimum interval between to messages.
dist (in meters) defines the minimum distance the GPS receiver must
have been moved between two messages.
A value of 0 for both intervals means do not send any messages.
Example:
filter = rule1:0; $GPGGA = 5; $GPRMC = 5; $GP = 0
Send GPGGA and GPRMC messages every 5 seconds, but no other GP
messages
filter = rule1:1; $GPGGA = 0, 200; $GPRMC = 0, 200; $GP = 0
Profile 1 of the same rule. Send GPGGA and GPRMC after moving 200m.
If the GPS receiver does not move, no messages are sent.
UBX messages can also be filtered:
filter = ubx; UBX-NAV-EKF=10; UBX-CFG = 30; UBX = 0
The file /etc/ubx.txt contains all available UBX class and id names.
#filter = rule; $GP = 1; UBX = 0

tcp_init_str: Send this as the first string whenever a new tcp_target
connection has been established. The value of the parameter is
sent verbatim, without any modifications.
tcp_init_str = $GPTXT,INIT,AnyRover (c) 2008-2012 by AnyWeb AG*20

Configure optional GPTXT messages.
These messages can contain arbitrary information
Syntax: gptxt = interval, action
A GPTXT message is sent every interval seconds along with
all GPXYZ messages from the GPS receiver to all configured targets.
action can be the name of an executable (including path),
or one of GPI, DIP or WLAN.

When set to GPI, information about the GPI pins is sent in this
format:
GPTXT,IO,<ign>,<res>,<val>,<val>[,...]*
example: $GPTXT,IO,0,1,0,0,0,0*64
where <ign> is the state of the ignition signal (0 or 1),
<res> is the state of the reset button (0 or 1),
<val> are the values of all GPI pins.
When set to DIP, the position of the DIP switches 1-6 are sent:
$GPTXT,DIP,0,0,0,1,0,0*3f
When set to WLAN, information about visible access points is
sent, if the wlan card is configured as client:
GPTXT,WLAN,<ssid>,<mac>,<channel_freq>,<signal>*
example: $GPTXT,WLAN,guestWLAN,00:0d:ed:87:c9:f2,2412,-72*50
Creating the WLAN information does not trigger a scan, but prints
the cached values. When idle, the system only starts a scan for
access points every 140 seconds or so, and then keeps these values
cached until the next scan.
##
When specifying an executable, the stdout of the program is sent
via GPTXT in the form
GPTXT,<STDOUT>*ck
If the output contains newline characters or is longer than
70 bytes, it is split into multiple GPTXT messages.
(NMEA specifies that messages must not be longer than 80 bytes).
#gptxt = 4, GPI
#gptxt = 5, /etc/scripts.d/some_fancy_script.sh
##
Lines for proper operation of AnyControl.
#gptxt = 15, GPI
#gptxt = 60, /etc/scripts.d/gptxt_handlers.sh adc
#gptxt = 20, /etc/scripts.d/gptxt_handlers.sh m1 modem_at_all
#gptxt = 20, /etc/scripts.d/gptxt_handlers.sh m2 modem_at_all
#gptxt = 20, /etc/scripts.d/gptxt_handlers.sh int_traffic ppp0
#gptxt = 20, /etc/scripts.d/gptxt_handlers.sh int_traffic ppp1
#gptxt = 20, /etc/scripts.d/gptxt_handlers.sh esfcalibration
#gptxt = 20, /etc/scripts.d/gptxt_handlers.sh mipstatus ssid
#gptxt = 20, /etc/scripts.d/gptxt_handlers.sh m1 roamingstatus
#gptxt = 20, /etc/scripts.d/gptxt_handlers.sh m2 roamingstatus
#gptxt = 60, /etc/scripts.d/shell.sh dualmodem status

Write current GPTXT messages to a file.
A set of the last GPTXT messages is written regularly to a file,
where it can be read and parsed.
gptxt_file: name of the file to write to. Directory where to
write the file must exist.
Recommended value: /var/gps/gptxt.txt
The GPTXT are indexed by the first field after GPTXT,
and only one message for every index is stored.
E.g. $GPTXT,INFO,Hello* -> key is INFO
gptxt_writeout: write file every n seconds. (10) Set to 0 to
disable this feature.
gptxt_clean: remove messages that are older than n seconds (60).
They are reinserted if they appear again.

gptxt_file = /var/gps/gptxt.txt
gptxt_writeout = 10
gptxt_clean = 60

The NMEA strings are made available to applications through fifos.
directory of these fifos.
default: /var/gps
directory = /var/gps

enable or disable gps bypass
sends gps data directly to the external serial port. This can be
achieved as well by adding a serial target, but the bypass is faster.
To enable the gps bypass the serial ports have to be enabled in the
serports section. (default: no)
gps_bypass = yes

TTY device of GPS receiver, don't change (default: /dev/ttyS2)
device = /dev/ttyS2
baudrate of GPS device (default: 9600)
baudrate = 9600

internal signals, don't change
gpio_reset = 38
gpio_on = 125

dead reckoning angle for gyrocontrol
defines the maximal deviation from a valid position of the
AnyRover, when dead reckoning is used
default: 30 degrees
angle = 30

[sms]
##
(8) SMS Console
##

listen for SMS?
start = yes

phone_number: list of phone numbers that are allowed to send
SMS commands to the System.
If list is empty or entry is missing, all numbers are allowed.
This check is performed for all sms commands.
#phone_number = +41790123456, +41760987654

interval: check for new messages every n seconds
interval = 15

SMS console
If console = yes, the system parses SMS with the command eco.
All other defined commands are parsed in any case.
console = no

If enabling the console by SMS, this key must be sent.
If set to -, the console cannot be enabled with SMS.
console_key = -

Answers to SMS commands
These attributes define the behavior of the system concerning
answers to SMS commands.
if send_answer_back is set to yes, the answer will be sent back
to the sender.
send_answer_to contains a list of phone numbers where the answer
will be sent to. The numbers must not contain spaces, and they
are separated by spaces.
Example:
send_answer_to = 0790123456, +41760987654
send_answer_back = yes
send_answer_to =

Catch_all hook
This program is called if no suitable command is found for an SMS.
It gets the number and the text of the SMS in environment variables:
$PHONE_NUMBER and $SMS_TEXT
If no catch_all is specified, undefined SMS messages are just dropped.
#catch_all = /some/executable/file

Sender id format
If an sms is received from a defined sender like SWISSCOM, the sender
id can be used as text or number. Default value is number.
sender_as_text = no

commands:
command_name = hash, command
command name: is sent by SMS (spaces are converted to underscores)
the command name must start with a lower case letter
hash: 0: command can be executed without hash
1: command must have a valid hash signature
(security warning: the hash is always the same for
the same command)
2: command requires 3-way handshake (not implemented yet)
If a value for hash is omitted, 0 is assumed.
command: The command is passed to the shell,
and the answer sent back by SMS (the first 160 bytes).
The commands described in the [gpio] section can also
be used here.
##
Examples:
ping_router: pings the next hop on the default route
ping_client: pings the first DHCP client
position: returns the current GPS position (don't use cat or tail
on the GPS fifos!)
#ping_router = 0, ping -q -c 4 `route | awk '/^def/{print $2}'` | awk
'BEGIN{a=0}/^---/{a=1;next}a'
#ping_client = 0, ping -q -c 4 `awk '/ List /{a=1;next}a{print $1;a=0}' <
/etc/hosts` | awk '/^---/{a=1}a'

#position = 1, head -n 1 /var/gps/gpgga.fifo

These command allows configuration over SMS. They are quite dangerous,
therefore they are disabled by default.
syntax: eco conf section[:name] attribute[+|-]=value
attribute=value replaces the first AVP with matching attribute
attribute+=value adds the AVP at the beginning of the section
attribute-=value removes the AVP with matching attribute and value
Further commands:
eco enable [password] - enable SMS console; password must be
the console_key defined above
eco disable - disable SMS console
eco list section [section] - sends back requested sections
eco restart - reload config
eco reboot - reboot system
eco reset - revert to factory defaults
eco templ name - load config from /etc/conf.d/name
eco save name - save config to /etc/conf.d/name
eco net [args] - customer specific.
This script does not do anything, it has
to be customized first.
eco_% = 0, /etc/scripts.d/eco.sh %@

[modem]
##
(9) Modems
##

name = modem1

set radio band for the modem
possible values (default = 3) for 3G modems:
0 = Automatic
1 = UMTS 3G only
2 = GSM 2G only
3 = UMTS 3G preferred
4 = GSM 2G preferred
Hint: in 2G mode, the modem cannot receive SMS under load
For LTE modems:
0-2: identical to 3G modems
3, 4: Automatic
5: GSM and UMTS only
6: LTE only (only use this option with a LTE antenna)
7: GSM, UMTS, LTE
11, UMTS and LTE Only
12, GSM and LTE Only
band = 3

set roaming option.
set parameter to yes to disable roaming
disable_roaming = no

PIN for the SIM card. This value is only used if the SIM card

asks for a PIN code. The code can be 4 to 6 digits.
If the modem asks for another code (e.g. PUK, PIN2), it has to
be fixed manually.
It is best to use SIM cards with the PIN disabled.
#sim_pin = 1234

IMSI checker: With this feature, the IMSI (number of the SIM card)
can be checked before starting ppp. Different actions can be taken
upon match or mismatch: start ppp on a different interface (e.g. ppp5)
or do not start ppp at all.
To find out the IMSI of the currently inserted SIM card, use one of
these commands from the shell:
at at+cimi
id2 /dev/clhip
If several rules are given, they are parsed in the order they appear
in the config file. Rules have the form "<IMSI>, X", where X is a
number in the range -1 .. 2147483648. If the IMSI matches, ppp is
started on interface pppX. If X is negative, ppp is not started.
The IMSI "-" matches everything, so it makes no sense to put more
rules after one rule with IMSI -; they are never tested.
Examples (with IMSI 228013520284438):
To only start ppp for one specific IMSI, use this:
imsi = 228013520284438, 0
imsi = -, -1
To start ppp for one IMSI on ppp0, and on ppp100 for every other:
imsi = 228013520284438, 0
imsi = -, 100
To not start ppp for one particular IMSI, but for every other:
imsi = 228013520284438, -1
imsi = -, 0
#imsi = 228013520284438, 5

Whether to wait until the SIM card signals it is ready.
Some SIM cards need some time after entering the PIN until
they are ready, and in some cases the system is too fast
with starting the connection, which results in a failed
connection attempt.
It is recommended and should be safe to keep this set to yes.
wait_for_sim = yes

GPIO port the modem is connected to. Don't change!
If gpio is unset, the modem is not switched on upon startup
gpio = 47
disable = 48
cmd_on = 0

Slot where the modem is placed.
For the CabLynx Eco / AnyRover, this is 0
slot = 0

Get modem status informations and store them to a file
Default value: yes
get_modem_status = yes

Define how often modem status informations get collected.
default value: 60 (seconds)
status_interval = 60

Show signal RX level on external LEDs.
When set to no, this command will not touch the external LEDs.
This may be needed if the LEDs are used to display something else.
Default value: yes
show_rx_led = yes

log bad modem connection, when it is worse than the defined rx value.
#log_value = -120

device files of the modem. Don't change unless you know what you do.
modem = /dev/clmodem
hip = /dev/clhip
ctrl = /dev/clctrl
gps = /dev/clgps

#[modem]
#name = modem2
#band = 3
#disable_roaming = no
#wait_for_sim = yes
##sim_pin =
##imsi = 123456789012345, -1
#gpio = 1107
#disable = 1106
#cmd_on = 1
#slot = 1
#get_modem_status = yes
#status_interval = 60
#show_rx_led = no
##log_value = -120
#modem = /dev/clmodem
#hip = /dev/clhip
#ctrl = /dev/clctrl
#gps = /dev/clgps

[usb]
##
(10) USB ports
##

switch power on USB ports on? If set to no, only self-powered devices
can be operated at the external USB ports. (default: no)
The internal WLAN card is also concerned by this flag. If set to no,
WLAN will not work.
poweron = yes

switch power on for the three external USB ports individually. To do
this, poweron has to be set to yes. usb1 and usb2 are the connectors

for the optional WLAN modules, usb4 is the USB connector on the
outside of the device.
usb1 = yes
usb2 = yes
usb4 = yes

If this parameter is set to yes, wlan0 and wlan1 are exchanged.
switch_wlan = no

##--
SD-card management
##--

Switch power on for the SD-card?
start_sdcard = yes

if yes, a drive connected on the USB port or an SD-card is mounted
automatically (default: yes)
automount = yes

Ignore filesystem errors and continue. If set to no, the device
will be remounted read-only.
ignore_errors = yes

Mount points for partitions on the SD-card.
This parameter can appear multiple times, once for each partition
to be mounted.
The partitions are only mounted if automount = yes.
sdpart = part-num, mountpoint
Example: sdpart = 1, /media/sdcard1
sdpart = 1, /media/sdcard1

[dhcp]
##
(11) DHCP
##

Configure the DHCP server on the AnyRover.
The DHCP server only serves on one interface (eth[01], vlanX).
It is possible to start multiple servers for different
interfaces, just insert multiple sections [dhcp], one
for each interface.
The IP addresses must correspond to the address set in the
[system] section (for eth[01]), and for the address of the VLAN
set in the [switch] section.

interface to run dhcp server on. One of
eth0, eth1, vlan1, vlan2, vlan3, vlan4, wlan0
this attribute must appear first in the section
name = eth0

whether to start dhcp server
start = yes

Location of lease file. If not given, lease file is written to
/var/lib/misc/udhcp.leases.<IFACE>
which resides on a RAM disk and is lost after a reboot.
#lease_file = /etc/udhcpd/leases.eth0

Logging. If set to syslog, the dhcp server will log its actions
to syslog.
#log = syslog

UDP Port to listen for DHCP requests. Default: 67
#port = 11167

first address of dynamic range
dhcpd_start = 192.168.1.11

last address of dynamic range
dhcpd_end = 192.168.1.12

##
Bootp options
These options are placed in the body of the dhcp offer
##

next_server: IP address to be placed in the "next server" field
#next_server = 192.168.1.9

server_hostname: Server hostname to announce to clients
#server_hostname = localhost

boot_file: Name of the file the client uses to boot
#boot_file = kernel.img

##
DHCP options
These options are appended to the dhcp offer
##

Netmask of the dynamic range. If not set, defaults to the netmask
of the interface the server is running on.
netmask = 255.255.255.0

Default router to tell the clients.
This parameter can appear multiple times to send multiple routers.
If not set or set to default, the IP address of the interface the
dhcp server is running on is used as router address.
#router = default
router = 192.168.1.3

Name servers to hand out to the clients. This parameter can
appear multiple times.
dns = 192.168.1.3
#dns = 164.128.36.74

#dns = 164.128.36.75

Lease time, given in seconds (default: 10 days)
The time can be given as a number followed by one of min, hour,
hours, day, days to give a longer timespan.
There must be a space separating the number and the unit.
#lease = 86400
#lease = 1 day
#lease = 12 hours

Further options available and description of parameter:
Options with a * can appear multiple times.
Fur more information check some dhcp documentation.
timezone = 7200 #time offset to UTC in seconds
*timesrv = 192.168.1.1 #IP address of time server
*namesrv = 192.168.1.2 #IP address of name server
*logsrv = 192.168.1.3 #IP address of log server
*cookiesrv = 129.168.1.4 #IP address of cookie server (RFC 865)
*lprsrv = 192.168.1.5 #IP address of line printer server
hostname = host.name.local #hostname of the client
bootsize = 6 #size of boot file in 512-Byte blocks
*domain = mydomain.local #Domain name for the client to use in DNS
swapsrv = 192.168.1.6 #IP address of swap server
rootpath = /root/path #Path to client's root disk
ipttl = 16 #default TTL for client to use
mtu = 1500 #MTU for client to use on this interface
broadcast = 192.168.1.255 #Broadcast address in client's subnet
nisdomain = domainname #NIS domain name for client
*nissrv = 192.168.1.7 #IP address of NIS server
*ntpsrv = 192.168.1.8 #IP address of NTP server
*wins = 192.168.1.9 #IP address of WINS server
requestip = 192.168.1.10
dhcptype = 8
serverid = 192.168.1.1 #IP address to send as server ID
message = some fancy message
vendorclass = CLASS string
clientid = id of client
tftp = 192.168.1.11 #IP address of tftp server
bootfile = path/to/boot/file #File the client uses to boot
userclass = CLASS string
wpad = autodiscovery #MSIE' "Web Proxy Autodiscovery Protocol"
vendorspec = 41:65:d:a:0 #Hex string to send as vendor specific
data

##
static leases
Place any static leases here. An entry has the form
static_lease = MAC-addr IP-addr
##

#static_lease = 01:23:45:67:89:ab 192.168.1.1

[dhcp]

name = vlan1
start = no
dhcpd_start = 172.24.34.11
dhcpd_end = 172.24.34.254
netmask = 255.255.255.0
router = 172.24.34.1
dns = 172.24.34.1

##--
DHCP Relay
##--
[dhcprelay]
Configure a dhcp relay.
start defines whether to start the service
start = no

client: List of interfaces (separated by comma) to listen for
DHCP requests on.
If left empty, listen on all interfaces.
If the interface is preceded by a '!', it is excluded from the list,
i.e. "client = !vlan1" means to listen on all interfaces except vlan1.
client = vlan1, vlan2

server: List of servers (separated by comma) to forward the DHCP
requests to. This can be IP addresses or interfaces. If an IP
address is given, the packet is unicast to that IP address. If an
interface is given, the packet is broadcast on that interface, and
the interface is excluded from the list of interfaces the program
listens on.
The gw-addr in the DHCP header is filled with the interface the
packet was received on.
server = 192.168.25.1

[ftp]
##
(12) FTP
##

start ftp deamon? (default: no)
start = no

use basic configuration options? (default: no)
basic = yes

allow anonymous logins? (default: no)
anonymous = yes

directory for anonymous access (default: /var/ftp)
ATTENTION! The directory /var/ is on a RAM disk, i.e. all files
in this directory do NOT survive a reboot.
anonymous_dir = /var/ftp

allow anonymous users to upload files? (default: no)

anonymous_write = no

allow anonymous users to delete files? (default: no)
anonymous_delete = no

direct configuration
these options are directly placed into the vsftpd.conf file
Note: vsftpd doesn't allow white space around the '=' sign
#option = hide_ids=YES

[tftp]
##
(13) TFTP
##

start tftp daemon? (default: no)
don't forget to open the port in the firewall section
start = no

allow file uploads? (default: no)
upload = no

root directory of tftp daemon (default: /tftp)
rootdir = /tftp

UDP Port to listen on (default: 69)
port = 69

[firewall]
##
(14) Firewall
##

This section defines firewall and packet mangling rules.
Firewall rules only decide what to do with the packets (reject,
accept), based on different fields in the packet.
Packet mangling rules modify the packet. NAT or port forwarding
are packet mangling rules.

##--
Global firewalling parameters
##--

Define whether bridged packets are seen by the firewall.
This can only be set globally, not per bridge.
filter_bridged = yes

Define whether vlan tagged frames on the bridge are seen by
the firewall. This can only be set globally, not per bridge.
filter_vlan = yes

Enable forwarding in the kernel.
If set to no, the system will not route packets.

forward = yes

##--
Packet logging
##--

NFLOG: Special log target that can be used to trigger actions
when certain packets appers (see nflog below).
This parameter defines whether to start this service.
It is still possible to define nflog rules when this is set
to no, but then the system will not evaluate the packets.
nflog_start = no

Script to execute when a matching packet appears. This script will
get all relevant packet information in the environment (NFLOG_*
variables).
The default script /etc/scripts.d/nflog.sh explains the details and
executes all scripts found in /etc/scripts.d/nflog/
It is recommended to place custom scripts in this directory and leave
the default wrapper script in place.
nflog_script = /etc/scripts.d/nflog.sh

NFLOG group. It is possible to create different groups where
messages are sent to. This value configures the group to be used
on the system. Possible values: 1-32
nflog_group = 7

NFLOG payload length: Copy up to this number of bytes from UDP packets
to variable NFLOG_PAYLOAD. If a non-printable character is encountered
before the required number of bytes is read, reading stops.
Payload is only copied for UDP packets.
nflog_payload_length = 64

##--
Firewall rules
##--

Define whether to start all firewall rules.
start_firewall = yes

The firewall is implemented using Linux' iptables.
The rules are inserted in the order they appear in the config file,
so make sure to place them in the correct order.
Upon booting the AnyRover, the switch is enabled only after the
firewall rules have been set.

Basic rules:
- deny everything addressed to the system via policy
(can be overridden by rules)
- deny everything passing through the system via policy
- allow ICMP echo request (ping)
- allow established connections
- allow related connections (e.g. FTP data, ICMP errors)

basic = yes

Allow creation of new chains
new_chain = NAME
creates the chain NAME
The name must not contain spaces or '_'. To create multiple chains,
use multiple entries.
#new_chain = mychain1
#new_chain = mychain2

Firewall rule definitions
Syntax:
target = [SRC][,[!]proto[,DST]][,R:RATE][,L:prefix][,I:ICMP]
[,MAC:[!]ADDR]
SRC,DST = [[!]if] [ipsec] [[!]net][:[!]ports]
RATE = [rate][:burst]
ADDR = {MAC address}
ICMP = (icmp-port-unreachable|icmp-host-unreachable|
icmp-port-unreachable|icmp-proto-unreachable|
icmp-net-prohibited|icmp-host-prohibited|
icmp-admin-prohibited) (default: icmp-port-unreachable)
##
target has the form rule[_chain]. If _chain is omitted, _in is assumed
Both rule and chain must not contain spaces or '_'.
rule can be one of
accept: let the packet pass
drop: drop the packet to the floor
reject: drop the packet and return icmp message to sender
-> use drop unless you know that you need reject
return: stop processing and return to parent chain
or apply chain policy
log: log packet to syslog. This rule does not stop processing!
nflog: log packet to netlink. This rule does not stop processing!
name of custom chain: processing will continue in this chain
chain can be one of:
in: add rule to INPUT chain
fw: add rule to FORWARD chain
out: add rule to OUTPUT chain
everything else: add to custom defined chain (which must exist)
##
if: input/output interface
interface: eth0, eth1, vlanX, wlan0, tunlX, tunX, ppp0, ...
-> Specifying an iif only makes sense in the _in or _fw rules.
-> Specifying an oif only makes sense in the _fw or _out rules.
For bridges, the physical interface can be specified:
[brX]>physIF, e.g. br0>vlan1, >vlan2
accept = br0>vlan1,tcp,:22
ipsec: The rule only matches if the cleartext packet arrives (SRC) or
leaves (DST) through an IPsec tunnel.
The keyword ipsec can only be used either in SRC or DST,
but not both (e.g. in _fw rules).
net: source/destination IP address
port: source/destination port; only used if proto is udp or tcp. If

there are more than one port, they have to be separated with a
colon.
proto: protocol (tcp, udp, esp, icmp)
rate: rate limit traffic (mostly used for log target, to prevent
log file flooding). E.g. 3/sec, 2/min, 7/hour, 12/day
do not use to limit bandwidth
burst: maximal initial number of packets (default: 5) to match
prefix: text to be used as log prefix; only valid for log targets.
The text must not contain , or ' characters. It can be
enclosed in double quotes ("), this is only necessary if
text ends with spaces.
ICMP: ICMP message to send back; only valid for reject targets.
ADDR: Filter based on source MAC address of packet.
An exclamation mark (!) inverts the matching, i.e. the rule then
matches everything except the given value.
##
Example: rule_fw = vlan1 192.168.1.0/24,tcp,vlan2 10.0.0.0/8
will accept packets originating in the net 192.168.1.0/24, entering
on interface vlan1, destined for 10.0.0.0/8 and leaving on vlan2

#accept = ,tcp,:21 # allow ftp connections
accept = ,tcp,:22 # allow ssh connections
#accept = eth0,tcp,:23 # allow telnet from inside
#accept = ppp0 ipsec,tcp,:23 # allow telnet through IPsec tunnel
accept = eth0,udp,:53 # allow DNS
accept = eth0,udp,:67:68 # allow DHCP
#accept = eth0,tcp,:80 # allow access to the Webserver
accept = eth0,udp,:123 # allow for local NTP clients
#accept = ppp0,udp,:123 # allow for remote NTP clients
#accept = ,udp,:500 # allow IKE (IPsec)
#accept = ,esp, # allow IPsec
#accept = ,udp,:4500 # allow IPsec NAT-T
#accept = ,udp,:1194 # allow OpenVPN
#accept = eth0,tcp,:2947 # allow access to gpsd daemon
#accept = ,tcp,:13180 # allow access to GPS server
log attempts to access via telnet on ppp0
#log = ppp0,tcp,23,R:3/min,L:"TELNET ON PPP0: "
#drop = ppp0,tcp,23 # block telnet traffic on ppp0
#reject = ,tcp,:113 # block ident request
#accept_fw = vlan1,,ppp0 # allow all traffic from vlan1 to ppp0

direct rule definition, value is directly passed to iptables:
(For more information, see documentation of iptables, e.g.
http://www.netfilter.org)
rule = {iptables parameter}
rule = -A INPUT -i eth0 -p udp --dport 123 -j REJECT

##--
Packet mangling rules
##--

Define whether to start packet mangling rules
start_mangle = yes

Network Address Translation
list of interfaces to perform NAT on, i.e. all packets leaving on
one of these interfaces has its source address set to the address
of the outgoing interface.
#nat = vlan1, vlan2, wlan0
nat = ppp0

Allow creation of new chains
new_natchain = NAME
creates the chain NAME in the NAT section
The name must not contain spaces or '_'. To create multiple chains,
use multiple entries.
#new_natchain = mynatchain

Port forwarding
To forward a port to a different host:
portfw = [proto],(tarip|iface)[:tport],dstip[:dport][,srcnet]
proto: protocol (tcp, udp, ...); if left blank, all packets that match
the rest of the rule are forwarded
tarip|iface: IP address or interface that is the target of the packet.
Can be an address range (e.g. 192.168.2.0/24).
tport: port the packet is addressed to. Can be left blank
dstip: IP address where the packet should be sent to. Mandatory
dport: port where the packet should be sent to. If left blank, the
original port number is taken.
srcnet: Network where the packet comes from. Can be an address range.
##
Examples:
forward all connections to port 80 (http) to webserver with address
172.24.17.42 and change to https (port 443)
#portfw = tcp,ppp0:80,172.24.17.42:443
#portfw = ,192.168.4.0/24,192.168.5.1,10.1.1.0/24

Source NAT and Destination NAT
Syntax (similar to firewall rules above):
snat = [SRC],[proto],[DST],T:target
dnat = [SRC],[proto],[DST],T:target
SRC,proto, and DST are used to match packets. When a match occurs,
the source/destination address/port is changed to target.
Input interface matching is not possible for snat, output interface
matching for dnat.
Ranges are supported in targets, both for ports and IP addresses. The
system will choose an appropriate value from the range automatically.
SNAT is only applied to packets leaving the system, after a routing
decision has been made, but before the packet is checked for IPsec
encryption.
DNAT is applied to packets entering or passing the system, before
a routing decision is taken.
DNAT is essentially the same as portfw above, but with different
rule syntax (similar to all other rules).
Use case: syslog cannot be configured with a source address, it always
takes the address of the interface on the direct route to the

destination.
To send syslog traffic into an IPsec tunnel, use an snat rule like the
first example below.
10.11.12.13 is the syslog server, 192.168.1.3 our internal address.
Example:
#snat = ,udp,10.11.12.13:514,T:192.168.1.3
#dnat = ,tcp,192.168.1.0/24,T:10.1.2.3:8000-8020
#snat = 10.11.12.0/24,tcp,192.168.1.24,T:10.1.2.1-10.1.2.5
The same rules as the portfw examples above:
#dnat = ,tcp,ppp0:80,T:172.24.17.42:443
#dnat = 10.1.1.0/24,,192.158.4.0/24,T:192.168.5.1

TCP MSS modification
These rules can be used to alter the MSS of TCP SYN packets.
This can be useful when traffic has to pass through a tunnel and
automatic detection does not work for some reason.
MSS mangling can be placed in one of the five chains INPUT,
OUTPUT, FORWARD, PREROUTING, and POSTROUTING:
- INPUT: for packets destined to the system
- OUTPUT: for packets from the system
- FORWARD: for packets passing through the system
- PREROUTING: for all incoming packets, before a routing decision
is taken, i.e. INPUT and FORWARD. No output interface
can be used in the PREROUTING chain (no routing
decision taken, output interface not known yet).
A destination network is allowed though.
- POSTROUTING: for all outgoing packets, after routing, e.g.
for FORWARD and OUTPUT. No input interface must
be used in the POSTROUTING chain.
A source address is allowed though.
Syntax (identical to rules above), proto must be set to tcp:
tcpmss_chain = [SRC],proto,[DST],M:MSS
Examples:
tcpmss_in = ,tcp,10.10.0.0/16,M:1300
tcpmss_fwd = 192.168.1.0/24 vlan1,tcp,vlan2,M:1374
tcpmss_out = ,tcp,wlan0,M:1356
tcpmss_POSTROUTING = ,tcp,192.168.17.0/24,M:1420
tcpmss_PREROUTING = tunl0,tcp,192.168.17.0/24,M:1444

[dyndns]
##
(15) DynDNS
##

start dyndns client?
start = no

username and password for dyndns
username = user
password = pass

dynamic hostname(s)
this attribute can appear multiple times

hostname = myhost.dyndns.org

further options for the inadyn program
don't remove the option syslog unless you know what you do
option = syslog
#option = update_period_sec 60

[ppp]
##
(16) PPP
##

name of the modem section
must be the first parameter in this section
modem = modem1

start ppp daemon?
start = yes

Username for 3G access
user =

Password for 3G access
password =

Set the ppp connection as the default route?
defaultroute = yes

Set the metric of the default route (default: 0)
defaultmetric = 0

Use DNS entries sent by peer?
usedns = yes

Debug: prints detailed information about the dial-in process
into the log file. Default = no
debug = no

configure connection through the modem
basic = yes takes the default ppp config file (default: no)
basic = yes

chat_verbose: if set to yes, chat logs the execution state as well
as all text sent and received during dialling.
Only has an effect if basic=yes
chat_verbose = yes

chat_script designates the chat script-section to use
if the name is basic, the template is taken and the parameter 'apn'
replaced in the basic config file
chat_script = basic

restart modem when ppp goes down? (default: yes)

restart = yes

Time [seconds] to wait until modem is switched on again.
Must be >0 (default: 2)
timeout = 2

If set to yes, do not restart when connection fails with NO CARRIER.
This leads to faster reconnect times after losing connection because
of no reception in dead zones.
#hold_nocarrier = yes

filter: packets that match this filter trigger dial on demand
and reset the idle counter. If not set, all packets match.
Syntax is similar to tcpdump, see tcpdump man-page for further
details.
Expressions that are inappropriate for ppp link such as ether and arp
are not permitted.
Syntax:
[(] [not] expr [)] [and|or] [[(] [not] expr [)]]
if src and dst are omitted, both directions match
[src|dst] host HOST
[src|dst] net NET [mask MASK]
[src|dst] port PORT
[src|dst] portrange RANGE
ip proto \\(icmp|ah|esp|tcp|udp)
(inbound|outbound)
expr RELOP expr
RELOP is one of <, >, <=, >=, =, !=
expr can contain integers, +, -, *, /, &, |, <<, >> (as in C)
PROTO[expr:size]
Examples:
filter = outbound and not icmp[0] != 8 and not tcp[13] & 4 != 0
filter = outbound and not ((tcp[13] & 4 != 0) or (icmp[0] = 3))
filter = outbound and ip proto \\esp
filter =

options are directly added to the ppp config file. For details see
man pppd(8)
Some useful options:
- demand: enable dial on demand.
The device is created and routing set up, but
the connection is only established upon demand
- persist: pppd doesn't terminate when the connection goes down,
but waits for the next connection request
- idle n: if the link is idle for n seconds (no traffic),
it is taken down
- holdoff n: wait for n seconds before re-initiating the link
after it terminates. Does NOT apply if the link
goes down because it was idle
Use more than 10s if modem restart is enabled,
because the modem needs roughly 10s to come back.
#option = demand
#option = persist

#option = idle 300
#option = holdoff 15

[ppp]
modem = modem2
start = no
user =
password =
defaultroute = no
defaultmetric = 10
debug = no
basic = yes
chat_verbose = yes
chat_script = basic
restart = yes
timeout = 2

[chat_script]
###===
(16a) chat scripts
###===
The chat script prepares the modem and dials the ISP. It consists
of a series of AT commands for the modem.
This sections does not allow for comments on the same line as
config directives (since the dial command contains a '#' character)

chat script for pppd.
basic: set APN for basic chat script
name = basic
apn = gprs.swisscom.ch
#apn = internet

##--
[chat_script]
chat script for pppd
the script is referenced in the ppp section by its name (name=...)
all script parameters are placed in the chat script
name = anyweb
script = '' AT
script = OK ATZ
script = OK 'AT+CGDCONT=1,"IP","my.apn"'
script = OK ATD*99#
script = CONNECT ''

[wan]
###===
(16b) WAN
###===

Start WAN connection. This is only active if [ppp] start = no
for the same modem.
start = no

Name of the corresponding modem section.
modem = modem1

APN to use for connection.
apn = gprs.swisscom.ch

Username for 3G/4G access
user =

Password for 3G/4G access
password =

IP parameters. See ipaddr in [system] section for description.
ipaddr = dhcp default nolinklocal dns

Radio Access Technology (RAT). Define which technologies to use.
Possible values:
0, 3, 4: Automatic
1: UMTS 3G Only
2: GMS 2G Only
5: GSM and UMTS Only
6: LTE Only
7: GMS, UMTS, LTE
Default value (if not specified): 3
#radio_access = 5

If set to yes, all chat messages are logged in the log file.
chat_verbose = yes

[ipsec]
##
(17) IPsec
##

configure IPsec connections
This section defines one IPsec tunnel between the system
and one peer. Through this tunnel, different local and remote
networks can be connected.
To define multiple tunnels with different peers, insert
one ipsec section for each tunnel.

start = [yes|no] defines whether to start IPsec (default: no)
start = no

Name of the connection
If the connection has multiple local or remote subnets, a
number is appended to the name.
If no name is given "ipsecX" is used, with X the number of the
ipsec section.
name = net-10

What to do when ipsec is started. Possible values:
start: bring up the connection

route: load connection, start as soon as traffic wants to use it.
add: set everything up, but do not initiate -> wait for peer
setup = start

IKE version to use (1 or 2). Default: 1
ike = 1

IKE fragmentation for IKEv2
If set to yes, large IKE messages will be sent in fragments.
If set to no (default if not set), IP fragmentation might be applied
if
IKE messages are larger than 1500 bytes.
fragmentation = yes

MobIKE for IKEv2
Enable the MobIKE extension (RFC 4555).
With MobIKE, the AnyRover can renegotiate a tunnel if the local
IP address of the tunnel endpoint changes.
Hint: if MobIKE is enabled, tunnel setup (IKE protocol) will use both
UDP ports 500 and 4500. Without MobIKE, only port 500 will be used;
port 4500 is then only used when NAT-T is needed.
MobIKE is not meant to dynamically switch to another interface for
use as tunnel endpoint, only to handle changing addresses (and thus
attachement points to the Internet) on a single interface.
mobike = no

scripts to perform actions on certain states must be placed in
/etc/scripts.d/ipsec-hooks , and they must be called one of
prepare-host prepare-client route-host route-client
unroute-host unroute-client up-host down-host up-client down-client
This path can either be an executable, which is run,
or a directory. Then all executables within named *.sh
are executed.
These scripts can be defined using the scripts section in this
config file.

##---
Addressing
##---
remote: peer for the IPsec tunnel (ip address, hostname in quotes ("))
If using a hostname, make sure it can be resolved.
To allow road warriors with unknown IP addresses to connect, specify
remote = any. To limit to certain IP addresses, see remote_range
below.
remote = 192.168.17.42
#remote = "vpn.example.org"
#remote = any

local: defines which interface the IPsec service listens on
possible values: eth[01] (local), ppp0 (3G), vlanX
If left blank, the IPsec service listens on the interface that
is the direct path to the remote host.
#local = ppp0

local_within: if route to remote goes over one of the interfaces
listed here, then this IPsec connection is started.
If interface is not listed, this IPsec connection is not started.
If list is empty or parameter not defined, the IPsec connection is
started.
#local_within = vlan1 vlan2

local_net: list of local networks, separated by space. The list can
contain IP addr/prefix pairs as well as interface names.
If not set, the address of the first configured interface
of eth[01], vlanX is taken.
local_net = eth0 br0
local_net = 192.168.1.0/24
local_net = vlan1: vlan2

Limit IPsec tunnel to a single protocol and/or port. Both protocols
and ports can be specified by name or number as given in
/etc/protocols and /etc/services.
Syntax: [proto][,[sport][,dport]].
Port numbers are given for traffic to the peer; for traffic from the
peer, the port numbers are exchanged.
Examples:
#protocol = tcp, http
#protocol = udp
#protocol = , 443
#protocol = udp, 67, 68

remote_net: list of remote networks, separated by space. The list
contains IP addr/prefix pairs. If set to any, the server
takes the remote net as advertised by the client. This
is used for road warrior setups.
remote_net = 192.168.18.0/24
remote_net = 192.168.18.0/24 172.23.0.0/16
remote_net = 0.0.0.0/0

remote_range: when configuring remote_net as "any", this parameter
limits the range of networks the remote host can advertise, as the
network must be a subnet of the network given here.
#remote_range = 192.168.0.0/16

remote_address: The internal source IP address to use in a tunnel
for the remote peer. This is needed for example when the peer is
a Cisco VPN Client.
This can be set to %config, then it will echo back the address
proposed by the remote peer.
#remote_address = 192.168.21.1

tunnel: if configuring multiple local and remote nets, it is
possible to define which local nets can talk to which remote
nets. If this attribute is omitted, all local nets can talk to
all remote nets.
All local nets are labeld with a number, starting from 1.

All remote nets are labeled with a letter, starting from a.
The tunnel attribute contains all number-letter pairs of allowed
connections, separated by space.
If the list starts with an '/', the listed connections define the
forbidden ones, with all others allowed.
This parameter can also be used to define source policy routes for
the connections. If a pair is followed by a colon and optionally
an IP address or interface, then upon completion of the tunnel
a route is set to the remote net with the IP address or interface
as source. If no source is given, the IP address of the interface
on the local subnet is used.
This route allows processes on the system to use the tunnel.
To set the source policy route on all connections, put the colon
as the first character in the string (even before a possible "/").
Example:
local_net = loc1 loc2
remote_net = rem1 rem2
These following two lines are identical:
- loc1 can connect to both rem1 and rem2
- loc2 can connnect to rem2
tunnel = 1a 1b 2b
tunnel = /2a
These examples show the usage of the source policy routing:
tunnel = 1a:eth0 1b:192.168.15.1 2a: 2b
tunnel = :1a 1b 2b
tunnel = :/2a
tunnel = :/

##---
Tunnel options
##---
NAT traversal is required if the IPsec packets are natted somewhere
Only relevant for IKEv1. Automatically detected with IKEv2.
natt = [yes|no] (default: no)
natt = no
send keepalive packets every n seconds (default: 10)
natt_keepalive = 10

Dead peer detection. The kernel sends echo request packets to
find out when the peer is no longer available. Three options are
available:
dpd_delay: send DPD packets every n seconds (0=off, default: 5)
dpd_retry: time in seconds until DPD packet is considered failed (5)
dpd_max: number of consecutively failed packets until peer is
considered dead (default: 5)
format: dpd = dpd_delay, dpd_retry, dpd_max
e.g. dpd = 5,5,5
dpd = 5,5,5

Action to take when the tunnel is found to be dead. Possible values:
restart: Try to reestablish the tunnel
clear: clear and unroute the connection; it cannot be reestablished
hold: hold the connection

Default: restart
dpdaction = restart

How many attempts should be made to negotiate a connection, or a
replacement for one (DPD), before giving up.
Can be a positive integer value, or 0 for forever.
Default (if not set): forever
tries = 0

##---
Identification
##---
my_identifier* = [address|fqdn|keyid|asn1dn], [string]
peers_identifier* = [address|fqdn|keyid|asn1dn], [string]
When using address as identifier, string can either be an
IP address, or one of ppp0, eth[01], vlanX, which will be replaced
with the IP address of the respective interface.
use fqdn, NAME for PSK systems, and asn1dn for certificates
my_identifier = address, ppp0
#my_identifier = fqdn, client.example.org
#my_identifier = asn1dn, C=ch, ST=zh, L=zh, O=AW, OU=AR, CN=srv, E=em@i.l
peers_identifier = address, 192.168.17.42
#peers_identifier = fqdn, server.example.org
#peers_identifier = asn1dn, C=ch, ST=zh, L=zh, O=AW, OU=AR, CN=clt,
E=em@i.l

##---
Authentication
##---
auth_method (use for IKEv1)
local_auth, remote_auth (for IKEv2)
Possible values are
any (default for remote_auth if not set)
psk pre shared key (default for local_auth)
pubkey certificates
cert synonym for pubkey for IKEv1
xauth-psk XAUTH with PSK (only for IKEv1)
xauth-cert XAUTH with certificates (use for Cisco VPN clients, IKEv1)
auth_method = psk
#local_auth = psk
#remote_auth = any

##...
Pre-shared Key
##...
psk = key pre-shared key, string or hex-number (prefixed with 0x)
psk = mysupersecretkey

##...
XAUTH
##...
xauth: specify role in XAUTH authentication. Possible values are
server and client.

This is only relevant if auth_method is xauth-psk or xauth-cert.
#xauth = server

xauth_id: Username and password for XAUTH authentication.
This parameter can appear multiple times to define several
username/password pairs.
Syntax: xauth_id = username:password
#xauth_id = very:secret

##...
Certificates
##...
the entries reference a [cert] section
these entries are only evaluated if auth_method=cert
* the root certificate is given in root
* the client certificate is given in cert
* the private key is given in key
* the certificate revocation list is given in crl
IPsec does not support certificates in .p12 format
#cert = ipsec-cert
#root = ipsec-root
#key = ipsec-key
#crl = ipsec-crl

##---
Security
##---
Security parameters
(ph1|ph2)_encryption = (aes|twofish|blowfish|3des) [keylen]
encryption algorithm to use (default: aes) for phase 1 and phase 2
The desired key length in bit can be given after the algorithm.
Make sure to use a key length that is supported by the algorithm
(key length must be a multiple of 8):
aes, twofish: 128 (default), 192, 256
blowfish: 40-448 (default: 128)
3des: 168 (fix)
3des should not be used anymore
ph1_encryption = aes 256
ph2_encryption = aes 256

(ph1|ph2)_hash_alg = (md5|sha1|sha256|sha384|sha512)
hash algorithm to use (default: sha256) for phase 1 and phase 2
md5 and sha1 are not considered secure anymore
ph1_hash_alg = sha256
ph2_hash_alg = sha256

ph1_prf = (md5|sha1|sha256|sha384|sha512|aesxcbc|aescmac)
It is possible to explicitely define the PRF algorithm for phase 1.
If not configured, the same algorithm as for hashing is used.
#ph1_prf = sha1

ph(1|2)_strict = (yes|no)
If set to yes (default if unset), then only the algorithms defined

above will be accepted for the tunnel. If set to no, all supported
algorithms will be accepted if proposed by peer.
Only use this for debugging purposes, e.g. if connecting to a peer
fails with "NO PROPOSAL CHOSEN". Setting *_strict to no will then
allow the tunnel to come up, so the correct settings can be found.
#ph1_strict = no
#ph2_strict = no

(ph1|ph2)_lifetime = time VALUE UNIT
specify life time of the ISAKMP/IPsec SA
VALUE is a number, UNIT can be one of sec,min,hour
default values:
phase 1: time 24 hour
phase 2: time 1 hour
ph1_lifetime = time 24 hour
ph2_lifetime = time 1 hour

dh_group and pfs_group denote the Diffie-Hellman group for the
key exchanges. The DH group defines the size of the prime numbers
used.
The groups must be defined identically on the other end of the tunnel.
dh_group is for phase 1, pfs_group for phase 2.
If you do not use PFS (perfect forward secrecy), just leave pfs_group
blank, i.e. pfs_group =
The default values for dh_group is 2, for pfs_group blank
dh_group = [1|2|5|14-18]
pfs_group = [|1|2|5|14-18]
==
|| group | prime size || group | prime size ||
||-------|------------||-------|------------||
|| 1 | 768 bit || 15 | 3072 bit ||
|| 2 | 1024 bit || 16 | 4096 bit ||
|| 5 | 1536 bit || 17 | 6144 bit ||
|| 14 | 2048 bit || 18 | 8192 bit ||
==
group 1 is not considered secure anymore, but the higher the group
the longer it takes to calculate the numbers.
dh_group = 2
pfs_group = 2

###===
(17a) IPsec Certificates
###===
There is no difference between IPsec and OpenVPN certificates.
The placement in different regions of the config file is solely for
the convenience of the user. The scripts check all available
[certificate] sections in the config file and identify the correct
one based on the name attribute.
The only restriction is that the appropriate certificate section
has to be after the reference in the ipsec or openvpn section.
##
IPsec does not support certificates in .p12 format.
[certificate]

name = ipsec-cert
type = pem
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

[certificate]
name = ipsec-root
type = pem
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

[certificate]
name = ipsec-key
type = pem
-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----

[certificate]
name = ipsec-crl
type = pem
-----BEGIN X509 CRL-----
-----END X509 CRL-----

[openvpn]
##
(18) OpenVPN
##
configure openvpn tunnel to server

start = [yes|no] defines whether to start openvpn at all
start_server for the OpenVPN server
start_client for the OpenVPN client
start_server = no
start_client = no

Some basic configuration options.
Common: port 1194, proto udp, dev tun,
verb 0, (logging)
for the client: client, ns-cert-type server, explicit-exit-notify
for the server: client-to-client, client-config-dir, keepalive, dh,
ifconfig-pool-persist, management
these options are sufficient to connect to an IPCop machine
(default: no)
basic_server = yes
basic_client = yes

##--
Server options
##--
server_net defines the net addr and mask of the virtual network
The OpenVPN server uses the first address of the range for itself,
and hands the others out to connecting clients
server_net = 192.168.0.0 255.255.255.0

server_remote_net defines the networks of the peer. A route to
these networks is defined on the host.
The list contains network/prefix pairs separated by space.
server_remote_net = 192.168.2.0/24 192.168.3.0/24
server_remote_net = 192.168.2.0/24

push_local_net: a list of network/prefix pairs separated by space.
Routes to these networks are pushed to the client.
push_local_net = 192.168.1.0/24

push_default: set the default route on the client to the tunnel
push_default = yes

##--
Client options
##--
remote = SERVER[:port] default port is 1194
SERVER can be a hostname or an IP address
remote = vpnserver.example.org
remote = vpnserver.example.org:1194
remote = vpnsrv.example.org

client_remote_net defines the networks of the peer. A route to
these nets is defined on the host. (Note: this routes can also be
pushed by the server, cf. push_local_net above).
The list contains network/prefix pairs separated by space.
#client_remote_net = 192.168.1.0/24 192.168.0.0/24

##--
Authentication
##--
auth_method = [psk|cert] pre-shared key or certificates
server_auth_method = cert
client_auth_method = cert

##--
Encryption
##--
Cipher to use. Default (if not specified) is BF-CBC.
However, this is no longer recommended. For better security,
use AES-128-CBC.
Earlier versions of AnyRover used BF-CBC.
To see all available ciphers, call
openvpn --show-ciphers
#server_cipher = BF-CBC
server_cipher = AES-128-CBC
#client_cipher = BF-CBC
client_cipher = AES-128-CBC

##...
Pre-shared Key
##...

OpenVPN pre-shared keys are saved in files and look like
x509 certificates. They are created with the command
openvpn --genkey --secret file
Here, the psk entry refers to a certificate section
server_psk = ovpn-psk
client_psk = ovpn-psk

##...
Certificates
##...
cert,root,key define the certificates
- when using one p12 file, place the name into cert
- otherwise, place the certificate into cert,
the root certificate into root and the key into key
the cert section is mandatory, the other two can be omitted
if a p12 file is given as certificate
server_cert = server-cert
server_root = server-root
server_key = server-key
client_cert = client-cert
client_root = client-root
client_key = client-key

##--
Additional options (server and client)
##--
add additional options to the openvpn config file
When using BF-CBC, inserting this line is recommended to counter
SWEET32 attacks: https://community.openvpn.net/openvpn/wiki/SWEET32
client_option = reneg-bytes 64000000
server_option = WHATEVER
client_option = WHATEVER

[clientconfigfile]
###===
(18a) Custom client config files
###===
With this section, custom client config files can be placed in the
--client-config-dir directory
The section takes 1 argument: file. It must be
present at the head of the section.
The rest of the section is directly copied to the indicated file.
Lines in the script cannot begin with '[', as this is interpreted
as the beginning of the next section.
Lines in the script can begin with a '#' sign, since after the
argument line, all lines up to the next section are copied.
file: name of the file to write. The file is placed under
/etc/openvpn/ccd
To prevent additional lines of the config file (like the EOF mark)
from appearing in the file, a new section header, e.g. [nofile],
can be placed there.
#file = client01
#iroute 192.168.33.0 255.255.255.0

[certificate]
###===
(18b) OpenVPN Certificates
###===
There is no difference between IPsec and OpenVPN certificates.
The placement in different regions of the config file is solely for
the convenience of the user. The scripts check all available
certificate sections in the config file and identify the correct
one based on the name attribute.
The only restriction is that the appropriate certificate section
has to be after the reference in the ipsec or openvpn section.

When using a p12 file (binary), the file has to be copied to the
AnyRover manually, and the path entered into the 'cert' option.
Alternatively, the certificates can be placed into the config file
in pem format.
Currently, it is not possible to use encrypted certificate files.

To generate the pem files from a p12 file, use these commands:
openssl pkcs12 -clcerts -nokeys -in file.p12 -out cert.pem
openssl pkcs12 -cacerts -nokeys -in file.p12 -out root.pem
openssl pkcs12 -nocerts -nodes -in file.p12 -out key.pem
(the -nodes option saves the key unencrypted)
To generate a p12 file from pem certificates:
openssl pkcs12 -export -in cert.pem -inkey key.pem \
-certfile root.pem -out file.p12

##--
name = ovpn-psk
type = pem
-----BEGIN OpenVPN Static key V1-----
-----END OpenVPN Static key V1-----

##--
[certificate]
name = server-key
type = pem
-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----

[certificate]
name = server-cert
type = pem
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

[certificate]
name = server-root
type = pem
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

##--
[certificate]
name identifies the certificate.
name = client-key

type = [pem|p12|file]
(file = FILENAME)
- if type is p12, the file must be specified,
and the section referenced as "cert" in the openvpn section
- if type is pem, the rest of the section is interpreted
as a pem file, the file attribute is not necessary in this case
- if type is file, the parameter file specifies the location of
the certificate file to use. This parameter is used if the
certificates in pem format are kept outside of the config file,
e.g. because they are renewed by some mechanism (e.g. SCEP).
The certificate is identified by the lines beginning with
-----BEGIN
and
-----END
everything in the cert file outside these markers can be omitted
type = pem
file = /etc/openvpn/cert.p12
-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----

[certificate]
name = client-cert
type = pem
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

[certificate]
name = client-root
type = pem
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

[tunnel]
##
(19) Tunnel
##
This section is used to configure tunnels.
Available are: IP in IP tunnel, GRE tunnel and SIT tunnel.
IPIP: IPv4, no multicast
GRE: IPv4, multicast
SIT: IPv6, multicast
If multiple tunnels are needed, several tunnel sections can be
defined.
##
Name: this string is used as the name for the tunnel interface
Use gre1, gre2, ... for GRE tunnels, tunl1, tunl2, ... for IPIP
tunnels
name = tunnel0

start: tunnel is only created if start = yes
start = no

type: defines the type of the tunnel: ipip, gre, sit
type = gre

local: IP address or interface of the local tunnel endpoint. The
remote endpoint is contacted exclusively over this interface.
If the route to the other endpoint shows through a different
interface, the peer is not reachable.
local = 192.168.1.3

remote: IP address of the other tunnel endpoint
remote = 192.168.17.42

remote_net: networks that are reachable through the tunnel
several networks are separated by space
remote_net = 192.168.42.0/24

vlocal: IP address (with netmask) of the virtual tunnel network
vlocal = 10.1.1.1/30

vremote: IP address of the peer in the virtual network
vremote = 10.1.1.2

[bridge]
##
(20) Bridge
##
Define a bridge. This section can appear multiple times.
Rules for bridges:
- An interface can only be part of at most one bridge.
- If an interface is part of a bridge, it cannot be used
directly anymore

name: will be the name of the bridge interface. This name can be
used in the firewall section. It must not collide with some
other interface name. Best is to use brX with X = 0,1,2,...
name = br0

start: set to yes to use this bridge. If set to no, this section
is ignored.
start = no

ipaddr: IP address/netmask of the bridge
The Syntax is identical to the parameter ipaddr in the system section.
ipaddr = 192.168.3.1/24

iface: space separated list of interfaces to be added to the bridge.
Possible interfaces are eth[01], vlanX, wlan0
iface = vlan2 vlan3

stp: set to yes to enable spanning tree protocol (STP)
If set to no, all following parameters are ignored.
stp = no

prio: priority of the bridge in the spanning tree root negotiations
prio = 32768

portprio: list of ports and their respective priority
portprio = vlan2:48 vlan3:99
portprio =

hello: timer for the STP hello packets
hello = 1

age: timer for the STP ageing
age = 4

fw_delay: forward delay timer
fw_delay = 4

cost: list of ports and their path cost.
cost = vlan2:45 vlan3:77
cost =

[banner]
##
(21) Message of the day
##
Message of the day.
If start = yes, all text between the start attribute and the next
line starting with '--- END MOTD ---' are placed in the file
/etc/motd and show upon login, no matter whether this being via
console, telnet, or ssh.
start = yes
--- END MOTD ---

[daemons]
##
(22) User daemons
##
Define user programs to be started upon boot or shutdown.
This section can reference a script defined in a script section.
The script sections are copied to files before this deamon section
is evaluated.
Do not start long running commands on shutdown, as the system
will not wait for them to terminate but proceed shutting down.
start defines scripts to be run on boot.
stop defines scripts to be run on shutdown.
start = /path/to/script/file
stop = /etc/scripts.d/led.sh clear

[script]
##

(23) User scripts
##
With this section, user scripts can be placed in the system
The section takes 3 arguments: name, file, mode. They must be
present at the head of the section.
The rest of the section is directly copied to the indicated file.
Lines in the script cannot begin with '[', as this is interpreted
as the beginning of the next section.
Lines in the script can begin with a '#' sign, since after the
3 argument lines, all lines up to the next section are copied.
name: currently not used, reserved for later
file: name of the file to write. If the name starts with a '/',
the path is taken absolute, else it is placed under
/etc/scripts.d/
Non-existing directories are created.
mode: the file mode of the file in octal notation, e.g. 755.
The mode parameter must appear after the file parameter.
If mode is "Link:FILENAME", then a symlink from FILENAME to
file is created, and the rest of the section is ignored.
Example:
file = /link/to/file
mode = Link:/original/file
To prevent additional lines of the config file (like the EOF mark)
from appearing in the script, a new section header, e.g. [noscript],
can be placed there.

##!!
HINT: files placed in /etc/scripts.d/ are deleted and recreated
upon system start. All other files are _not_ deleted automatically,
especially not if a section is removed from the config file.
It is thus not recommended to create files with script sections
outside of the /etc/scripts.d/ directory, as this can have hard
to find side effects if the configuration is changed.
##!!

#name = myscript
#file = /etc/scripts.d/local/test.sh
#mode = 755

[webserver]
##
(24) Webserver
##
enable the webserver?
start = no

Port to listen on. Don't forget to open this port in the firewall.
Default: 80
port = 80

Interface to listen on. Can be one of eth[01], ppp0, vlanX;
or an IP address.
If not set or set to all, listen on all interfaces.

Currently, only one interface is supported. If you need to listen
on multiple interfaces, you have to leave this empty.
You can then block access to non-required interfaces with
corresponding firewall rules.
interface = all

Set the document root.
default: /usr/share/www
document_root = /usr/share/www

Run boa webserver as specified user. If not given, user nobody
any group nogroup are used.
#user = root
#group = root

Location of the log files. If no path is given, they are placed in
/var/log/boa/
Default: /var/log/boa/access_log and /var/log/boa/error_log
access_log =
error_log =

The MIME type of files is determined according to file extension.
For missing or unknown extensions, the type can be specified here.
Default value: text/plain
Example: text/html, application/x-httpd-cgi (for cgi scripts)
#default_mime = application/x-httpd-cgi

Add any further options to webserver config file (boa.conf)
#option = ScriptAlias /cgi-bin/ /etc/scripts.d/local/cgi-bin

Define whether to enable AnyGator scripts.
anygator = no

[wlan]
##
(25) WLAN
##
start the wlan card?
If set to yes, make sure to enable power on the USB bus in the
usb section.
start = no

mode: operating mode for the WLAN card:
ap (access point), client, mesh (IEEE 802.11s)
mode = client

device defines the network device to run on. For the internal
wireless LAN card, this is wlan0.
This parameter can be set to none for a standalone Radius server,
when running in ap mode.
If set to none when running in client mode, the configuation files
will be created, but wpa_supplicant will not be started.
device = wlan0

Scripts to be run on (dis)connect events must be placed in
/etc/scripts.d/wlan-ap-hooks/ and /etc/scripts.d/wlan-client-hooks/
They have 2 or 3 parameters: interface cmd [clientMAC]
interface defines the WLAN interface the event occurred on, cmd is
CONNECTED or DISCONNECTED for client interfaces, and
AP-STA-CONNECTED or AP-STA-DISCONNECTED for AP interfaces.
On AP interfaces, the MAC address of the client is passed as
the 3rd parameter.

##--
Common options
country, channel and ipaddr are for the client, ap and mesh modes,
all other common options are only for client and ap modes.
##--
#
Country: CH, US, ...
country = ch

channel: channel number to use.
For ap and mesh mode, this is the number of the channel to use.
For client mode, this can be a list of channels to scan, e.g.
channel = 1,7,13 for 2.4 GHz
channel = 36,40,44,48,52,56,60,64 for 5 GHz (V2 only), only for
indoor use.
If not set, channel 1 is used for AP and mesh, and all for client.
channel =

Set the ip address of the WLAN interface.
The syntax is identical to the ipaddr parameter in the system section.
dhcp does not work if the card is running as access point.
ipaddr = dhcp default nolinklocal noarp

##--

Set the SSID. This can be either an ASCII string, or a hex value.
Start with 0x if giving a hex value. If the ASCII string starts with
the characters 0x, enclose in quotes (").
ssid = SSID

Key management protocol. Possible values are
WPA-PSK, WPA-EAP for AP mode,
WPA-PSK, WPA-EAP, IEEE8021X, NONE for client mode.
Multiple values can be given separated by space.
key_management = WPA-EAP

List of accepted pairwise (unicast) ciphers for WPA. Possible values
are
CCMP, TKIP, WEP104, WEP40 for client mode
CCMP, TKIP for AP mode.
Default (if not set) is all.
pairwise = CCMP

WEP keys. Enter up to 4 WEP keys. The keys can be ASCII text or a hex
value (starting with 0x).
#wep_key = 0x11223344556677889900112233
#wep_key = 0x12345678901234567890123456
#wep_key = 0x09876543210987654321098765
#wep_key = 0x00998877665544332211009988

Select the default WEP key. Can be a value from 0 to 3.
0 means the first wep key in the config is used as default key.
#wep_default_key = 0

By default, EAPOL version 2 is applied. But since many APs only
support version 1, it can be set here.
eapol_version = 1

##--
Client specific options
##--

Scan with SSID-specific frames. This is needed when dealing with
access points that do not broadcast their SSID.
Do not enable if not needed, since it will add latency to the
SSID scanning process.
scan_ssid = no

If key_management is set to WPA-PSK, the pre-shared key is entered
here. The key can be ASCII text or a hex value (starting with 0x).
If the ASCII text starts with the characters 0x, is has to be enclosed
in quotes (").
pre_shared_key =

Space-separated list of accepted EAP methods. Possible values are
MD5, MSCHAPV2, OTP, GTC, TLS, PEAP, TTLS
eap = PEAP

List of accepted group (broadcast/multicast) ciphers for WPA. Possible
values are:
CCMP, TKIP, WEP104, WEP40.
Default (if not set) is all.
group = CCMP

Identity string for EAP.
identity = userid

Password string for EAP.
password = password

Root certificate to use for cert based authentication.
References a [certificate] section.
#root = wlan-root

Certificate to use for cert based authentication.
References a [certificate] section.

#cert = wlan-cert

Key for certificate.
References a [certificate] section.
#key = wlan-key

Phase 1 (outer authentication, i.e. TLS tunnel) parameters.
This is a string with field-value pairs, e.g.
peapver=0
phase1 =

Phase 2 (inner authentication with TLS tunnel) parameters.
This is a string with field-value pairs, e.g.
auth=MSCHAPV2
phase2 = auth=MSCHAPV2

##--
Mesh network specific options
##--

Mesh ID. All stations that want to participate in the mesh
must have the same ID. The ID is an arbitrary string.
mesh_id = mymeshid

##--
Server (Access point) specific options
##--

WPA: enable WPA:
wpa, wpa2
wpa = wpa2

Broadcast SSID
If set to no, the SSID will not be broadcast.
broadcast_ssid = yes

Advertise regulatory domain according to IEEE 802.11d?
Default: no
ieee80211d = yes

Use IEEE 802.11n
If set to yes, set hw_mode = g for a 2.4GHz access point
or hw_mode = a for a 5GHz access point (V2 only)
Default: no
ieee80211n = no

hw_mode: operation mode.
a = IEEE 802.11a, b = IEEE802.11b, g = IEEE802.11g
hw_mode = g

##::
MAC address filtering
##::

macacl: enable MAC address access list
no: disabled, all clients can connect
accept: allow client unless MAC address is in deny list
deny: deny client unless MAC address is in accept list
#macacl = deny
macacl = no

MAC ACL access and deny lists. Use one line for every MAC address.
acl_accept: Write MAC address in access list. These clients can
connect if macacl is set to deny.
acl_deny: Write MAC address in deny list. These clients cannot
connect if macacl is set do accept.
#acl_accept = 00:11:22:33:44:55
#acl_deny = 55:44:33:22:11:00

##::
IEEE 802.11n Capabilities
##::
High throughput mode (greenfield mode).
Only enable if no 802.11a/b/g clients are around, otherwise
the network will not work reliably.
cap_htgf = no

Support for 40MHz channels.
##
[HT40-] = both 20 MHz and 40 MHz with secondary channel below
the primary channel
available channels: 2.4 GHz: 5-13, 5 GHz (V2 only): 40,48,56,64
##
[HT40+] = both 20 MHz and 40 MHz with secondary channel above
the primary channel
available channels: 2.4 GHz: 1-7, 5 GHz (V2 only): 36,44,52,60
##
possible values (don't set to use 20 MHz channels):
cap_40mhz = 40- for [HT40-]
cap_40mhz = 40+ for [HT40+]
cap_40mhz = 40+

Support for Short Guard Interval
Can provide an increase of 11% on data rate at the cost of less
stable network and more packet collisions.
Only use if maximum data rate is of utmost importance.
cap_short_gi = no

Enable multiple receiving channels. Possible values: 1, 2
Depends on the number of antennas attached to the device.
cap_rx_stbc = 1

Enable frame aggregation.
Results in an increased user level data rate.
cap_amsdu = no

##::

WPA pre-shared key
Defines the pre-shared key for key_mgmt=WPA-PSK
Either define wpa_psk here valid for all clients, or give one
wpa_psk_entry for every MAC address. wpa_psk_entry can appear
multiple times. Syntax: wpa_psk_entry = MAC KEY
The MAC-Address 00:00:00:00:00:00 is for all clients.
If wpa_psk is set, wpa_psk_entry lines are ignored.
The PSK can be an ASCII string (8..63 characters) or
a hex key (64 hex digits) prefixed with 0x
#wpa_psk = secretwlanwpapskpresharedkey
#wpa_psk =
0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef
#wpa_psk_entry = 00:11:22:33:44:55 keyforclient1
#wpa_psk_entry = 00:22:44:66:88:aa keyforclient2
#wpa_psk_entry = 01:23:45:67:89:0a
0x0123456789abcdef0123456789abcdef0123456789abcdef0123456789abcdef
wpa_psk =
#wpa_psk_entry =

enable 802.1x
ieee8021x = no

##--
Use internal authentication server
##--

Reference to an authentication section to be used as EAP server.
This references the name attribute of the authentication section.
authentication = eap_server

##--
external Radius Server (Access point) specific options
##--

Use an external Radius server for authentication.
If enabling this, don't use authentication above.
Otherwise, it won't work...
use_radius_server = no

Define IP address to use as source for communication with
radius server.
Default: use address according to routing table.
#source_addr = 192.168.1.3

The IP address of the access point (used as NAS-IP-Address)
If not given, the system uses the IP address of the WLAN card.
radius_ipaddr = 192.168.59.62

IP address and port of the Radius server. If port is not given,
the default port 1812 is used.
Multiple Radius and Accounting servers can be configured by repeating
these two statements. They are used if the first one does not reply.

radius_server = 192.168.155.45:1812

The shared secret used for accessing the Radius server.
radius_secret = thisisverysecret

IP address and port of the Accounting server. If port is not given,
the default port 1813 is used.
radius_accounting = 192.168.201.98:1813

The shared secret used for accessing the Accounting server.
radius_acct_secret = thisisevenmoresecret

The interval (in seconds) to try and return to first radius server.
If set, the system will try to return to the first server even if the
current server still works.
If not set, the system will try the given Radius servers consecutively
and stays with a working server until it fails.
#radius_retry = 600

###===
(25a) WLAN client Certificates
###===
[certificate]
name = wlan-root
type = file
file = /etc/certs/wlan/ca.pem
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

[certificate]
name = wlan-cert
type = file
file = /etc/certs/wlan/cert.pem
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

[certificate]
name = wlan-key
type = file
file = /etc/certs/wlan/key.pem
-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----

[authentication]
##
(26) Authentication (EAP/Radius server)
##

Name of the section. This parameter must be first in the section.
name = eap_server

This section is only evaluated if start is set to yes.
start = no

Defines whether this authentication server runs as a standalone
RADIUS server ("yes"), or is referenced from a WLAN section ("no").
standalone = yes

Username/password pair for EAP phase 1 authentication.
Syntax: eap_phase1_id = TYPE [user[:password]]
type can be one of: PEAP TTLS
If username and/or password are omitted, no checking occurs
in phase 1 negotiation.
eap_phase1_id = PEAP

Username/password pair for EAP phase 2 authentication.
Syntax: eap_phase2_id = TYPE [user[:password]]
type can be one of: MSCHAPV2 (for PEAP), TTLS-MSCHAPV2 (for TTLS)
eap_phase2_id = MSCHAPV2 fancyuser:verysecretpassword

CA certificate. This references a [certificate] section.
root_cert = eap_ca_cert

Server certificate. This references a [certificate] section.
server_cert = eap_server_cert

Server key. This references a [certificate] section.
server_key = eap_server_key

Run RADIUS server? This is not needed if this authentication section
just serves a WLAN AP running on this host.
radius_start = no

The following attributes are only used if radius_start is set to yes.

IP address the RADIUS server and RADIUS accounting server listen on.
If not set: 0.0.0.0
#radius_addr = 192.168.1.3
#radius_acct_addr = 192.168.1.3

UDP port the RADIUS server and RADIUS accounting server listen on.
Default is 1812 for RADIUS server and 1813 for accounting server.
radius_port = 1812
radius_acct_port = 1813

IP addr/network and secret key pairs.
If several clients share the same password, the client addresses
can be listed on one line separated by spaces.
These attributes can appear multiple times for multiple clients.
The secret always belongs to the last client that was defined
prior to the secret.
radius_client = IP/prefix
radius_secret = thisisaverysecretsharedsecret

###===
(26a) Server Certificates

###===
[certificate]
name = eap_ca_cert
type = pem
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

[certificate]
name = eap_server_cert
type = pem
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

[certificate]
name = eap_server_key
type = pem
-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----

[ospf]
##
(27) OSPF
##

Start OSPF?
start = no

OSPF router id. This can be an interface name, an IP address or
a single number. If an interface has multiple IP addresses, the
first one is taken (which means that if interface lo is given,
the router id will be 127.0.0.1)
router-id = vlan1

Default route. If set to yes, the default route is advertised
through OSPF.
insert-default = yes

Area definition. The definition contains the area number and
a list of interfaces or networks that belong to this area,
separated by comma.
This parameter can appear multiple times.
#area = 0, vlan1, vlan2

Stub area definition. Identical to area definition, but the area
is marked as stub area.
This parameter can appear multiple times.
#stub = 1, vlan2, vlan3

Passive interfaces. The network of these interfaces is advertised
through OSPF, but the protocol is not run on them.
This value must be a (list of space separated) interface name(s).
#passive = ppp0

Authentication options. The authentication options contain area
number, authentication type, and a list of interface:key tuplets
or interface:id:key triplets.
Authentication type can be key or md5
The key is defined as interface:key for type key, and
interface:id:key for type md5.
The id must be consistent across routers on a link.
#auth = 0, key, vlan1:verysecret, vlan2:evenmoresecret
#auth = 1, md5, vlan2:2:unbreakable

Route summarization. Only valid on ABRs. If networks in an area
are contiguous, the router can advertise a route summary into other
areas.
The definition contains the area id, and a list of summarized networks
to advertise into other areas.
range = 1, 192.168.64.0/22

[snmp]
##
(28) SNMP
##

Start SNMP?
start = no

Listen for SNMP requests
listen = [proto:][interface/address:][port],...
Define where to listen for SNMP requests. proto is one of tcp, udp.
Default is to listen on udp:0.0.0.0:161
listen = udp:161

SysDescription. Can be an arbitrary string. If not set, value will
be the output of "uname -mnrsv"
sysdescr = AnyRover v2

Location information. Can be an arbitrary string.
location = here

SNMP contact information. Can be an arbitrary string. Usually
an email address or phone number.
contact = mail@example.com

List of services on this system.
Possible values: physical, datalink/subnet, internet, endtoend,
application
Can also be a number: 1, 2, 4, 8, 64 correspond to the above names
services = physical, datalink, internet

##--

User management
user = SNMP version,{ro|rw},(community|user:password)[,source[,OID]]
A user with read only (ro) or read/write (rw) capabilities is

created for SNMP version (1, 2 or 3).
Username/Password pair is only valid for SNMP v3, while community,
source, and OID is only used for SNMP version 1 and 2.
If source is specified, only requests from this source are accepted.
Source can be an IP address, a hostname, or a net address, e.g.
192.168.43.12, mysnmphost, 192.168.67.0/24
If OID is specified, access is limited to the subtree rooted here.
user = 3, ro, admin:adminpass

Monitor processes
process = name [, max [, min]]
Process name must be present between min and max times
#process = gpio_daemon, 2, 2

Execute arbitrary scripts
exec = [OID,] name, path [,arg [,arg]]
sh = [OID,] name, path [,arg [,arg]]
extend = [OID,] name, path [,arg [,arg]]
When queried, the program path is executed and its output and status
returned. If OID is specified, the output will be rooted at this point
in the OID tree and the full output of the program is returned.
Otherwise, only the first line of the output is returned in
the extTable.
Use exec for binary programs and sh for shell scripts.
Apart from that, they are identical.
Extend is an improved form of exec, where the results are returned
in two tables, once the full output as a single string, and once
every line separately.
Extend works for both binaries and shell scripts.
Use extend unless you have some good reason not to.
#extend = SomeFancyName, /path/to/my/binary, argument1, argument2

##--
Traps
##--

Default community for traps.
trapcommunity = public

Default username for the trap agent. This must be a valid SNMP v3
user that the agent uses to poll the information needed to check
the values.
trapagent = admin

Destination address for traps (SNMP version 1 and 2)
trapsink = [tcp|udp:](ip address|hostname)[:port][, community]
trap2sink = [tcp|udp:](ip address|hostname)[:port][, community]
Send all traps to this destination. If community is not given,
the value from trapcommunity is used.
Default protocol is udp, default port is 162
#trapsink = 192.168.1.1

Enable or disable sending authentication failure traps.

authfail = no

Enable or disable sending interface up/down traps.
updown = no

Monitor MIB object
monitor = name, expr [, action [, user [, freq [, oid [, oid]]]]]
The name must be unique for every monitor.
expr is of the form: OID | !OID | !=OID | OID OP value | OID min max
OP can be one of ==, !=, <, <=, >, >=
action is the name of an action attribute (see below). If action is
omitted, a notification event is generated (i.e. a trap sent).
freq defines the interval for checking the expression (default: 600)
Further oids are appended if action is a notification event
#monitor = Interface UP, ifOperStatus != 2, linkUpTrap, admin, 60

Action to perform when a monitor triggers
action = name, type, value [, oid [, oid]]
The name is used to identify the action (see monitor above).
type can be one of: set, notify
If type is set, value is of the form: oid = value
If type is notify, value is the notification type, one of:
coldStart, warmStart, linkDown, linkUp, authenticationFailure,
egpNeighborLoss, enterpriseSpecific
If set is notify, additional OIDs can be specified that are sent
in the trap message.
#action = linkUpTrap, notify, linkUp, ifIndex, ifAdminStatus,
ifOperStatus

[dns]
##
(29) DNS
##

DNS Proxy
Start the DNS proxy?
Make sure to open the necessary port(s) in the firewall section.
By default, DNS queries are on UDP:53.
start_proxy = yes

Use some basic properties? If set to yes, some useless Windows
queries are blocked so they don't generate upstream traffic
(disable this if you use Kerberos, SIP, XMMP or Google-talk),
and addresses in the private address space or plain names
(without dot in the domain part) are not forwarded.
proxy_basic = yes

List of interfaces to listen on for queries, separated by comma.
If this is not set, the proxy listens on all local interfaces.
If the list starts with a '/', it specifies the interfaces
that are not used.
Either use this or proxy_address below, but not both.
proxy_interface = /ppp0

List of IP addresses to listen on, separated by comma.
Either use this or proxy_interface above, but not both.
#proxy_address = 192.168.1.3

Port to listen on for DNS queries. If not defined, the default
port 53 is used.
#proxy_port = 53

Domain name to append to simple names for DNS lookup.
Example: if set to example.org, and a client tries to look up
myhost, then the proxy will send myhost.example.org
to the name server.
#proxy_domain = localdomain

More parameters can be put here. Some useful parameters are
- strict-order: query the name servers strictly in the order they
appear in the /etc/resolv.conf file.
- all-servers: query all servers at the same time. If not set,
they are queried one after the other until one answers.
proxy_param = strict-order
#proxy_param = all-servers

Add static host entries to prevent DNS lookups.
#static_host = google-public-dns-a.google.com, 8.8.8.8

[serports]
##
(30) Serports
##

enable serports
enable = yes

[openconnect]
##
(31) OpenConnect VPN
##

OpenConnect is a client for Cisco's AnyConnect SSL VPN.
OpenConnect is not officially supported by, or associated in any
way with, Cisco Systems. It just happens to interoperate with
their equipment.

Start openconnect?
start = no

Address of remote server
Format: https://server.example.org or https://192.168.20.12
remote = https://server.example.org

Username to connect on the remote server.
username = user

Password for login on the remote server.
password = verysecret

openconnect complains and asks for confirmation if it cannot
verify the server certificate. Setting this parameter to no
prevents this check.
check_certificate = no

[mobileip]
##
(32) Mobile IP
##
Abbreviations: HA = home agent, MN = mobile node, HoA = home address

Start Mobile IP?
start = no

Mode: mn (mobile node) or ha (home agent, not supported yet)
foreign agent is not supported.
mode = mn

##--
Addressing
##--
IP Address of the HA. If the HA has multiple IP addresses, they
can be given separated by comma. The MN will use the first address
to contact the HA, and the rest to identify the HA from agent
advertisements (when the MN is at home).
ha = 192.0.2.56

IP address of the MN in the home network. Set to 0.0.0.0 to get
address through AAA infrastructure (not supported yet).
hoa = 10.62.1.23

List of interfaces over which the MN will not try to contact the HA.
The interfaces lo, tunl0, and gre0 are ignored by default. To enable
them, list them with a leading '/'.
Example:
#ign_interface = wlan0, wlan1
#ign_interface = wlan0, /gre0
ign_interface = eth0, vlan1

Define what kind of routing will be set up once the tunnel is
established. Possible values: default, none, {network}.
default: a default route will be set to the tunnel
none: no routing is set up, it must be done using some external
scripts, e.g. in /etc/scripts.d/mip-hooks/
If the value is a network address, then routing to this network
is set over the tunnel.
Example:
#routing = default
#routing = 10.0.0.0/8

#routing = none
routing = default

##--
Security parameters
##--
SPI: Security Parameter Index. Defines the security association on
the HA. Given either in hexadecimal (prefixed with 0x) or decimal.
Example:
#spi = 0x10a
spi = 266

Authentication algorithm. Possible values:
md5-prefix-suffix, hmac-md5, sha1, hmac-sha1
Do not use md5-prefix-suffix, it has known weaknesses and does
not work with Cisco HA devices.
auth = hmac-md5

Shared secret for authentication with the home agent.
RFC2002 compliant secrets have 16 bytes or 32 hex digits; but
other lengths are also supported.
Format: hex number (prefixed with 0x) or string.
Example:
#secret = ABCDE
#secret = 0x4142434445
secret = AnyRoverSecret

Replay protection. Possible values: none, timestamp, nonces
replay = timestamp

##--
Tunnel parameters
##--
Tunnel life time: Time until next re-registration in seconds.
Values >=65535 mean infinite (i.e. never send re-registration).
lifetime = 3600

UDP port to send registration requests to.
Default: 434
udpport = 434

UDP port to use as source in the communication with the HA.
If not set, a random port is used.
#udpsrcport = 435

Tunnel keepalives. An active tunnel is probed regularly to check
availability. This parameter defines the minimum interval between
keepalive pings (in milliseconds).
interval = 200

A link is considered to be down after this amount of lost keepalive
pings.
linkdown = 3

Initial keepalive round trip time (in milliseconds). The round
trip time is constantly updated according to current values.
See parameter percentage.
tunnel_rtt = 500

Ping timeout: if a reply is not received withing this precentage
of the average round trip time (tunnel_rtt), it is considered lost.
percentage = 120

##--
Dynamic switching
##--
Link priority: The MN keeps a list of all default routes sorted
by routing metric.
If link priority is enabled, it will constantly check all routes
with lower metric than the currently used, and switch to a
better one as soon it is available.
If not set, the MN only changes route if the currently used
route disappears.
link_priority = yes

Define how to check higher priority routes. Currently, there are
three possibilities: ICMP echo request, MIP RegReq valid and invalid
ICMP echo request sends ICMP echo request messages to the HA,
while MIP RegReq sends MobileIP registration requests.
When using valid RegReqs, the tunnel must be switched after the first
successful message, and the next parameters have no effect.
When using invalid RegReqs, the id field which contains the current
time is modified to some point in the past, which causes the HA
to respond with "authentication failed" messages. This way, it is
possible to wait for several failure messages until the tunnel is
switched.
If link_prio_icmp is set, then link_prio_regreq_valid is ignored.
If none of these attributes are set, link_prio_icmp=yes is assumed.
link_prio_icmp = yes
link_prio_reg_valid = no

This parameter defines the number of successful answers from the HA
until the MN switches to this route.
link_count = 2

This parameter defines the interval between consecutive hello
messages (in seconds). Together with link_count, this defines how
##fast the MN will switch to a better link after it is available.
link_interval = 2

[scep]
##
(33) SCEP
##

This section describes the parameters for automatically enrolling

certificates using SCEP (Simple Certificate Enrollment Protocol).
Using SCEP, expiring certificates are automatically renewed with
the SCEP server.
This section can appear multiple times, to renew several sets of
certificates

Hook scripts:
Upon completion of the SCEP process, a hook script is called
which then calls all scripts in /etc/scripts.d/scep-hooks/ and
/etc/scripts.d/scep-hooks/<name>/ where <name> is the value
of the name parameter in this section.
In these scripts, several environment variables are set:
SCEP_NUMCERT: number of certificates to renew
SCEP_SUCCESS: number of certificates that were successfully renewed.
SCEP_TIMEOUT: number of certificates where server timeout occurred.
SCEP_SKIPPED: number of certificates that are not expiring yet.

Name of the section. This is used as name of the config file,
and then passed to the hook scripts.
This parameter must appear first in the section.
name = ipsec-cert

Start SCEP client
start = no

Time table for checking the certificate. This entry will create an
entry in the cron table and will automatically enable cron daemon,
even if it is disabled in the [cron] section.
This parameter can appear multiple times, it will then check at every
of the specified times.
The SCEP client contains protection against running multiple times
at the same time.
Syntax:
- same as for cron entries:
#check = 30 21 * * *
- weekly DAY TIME
#check = weekly thursday 19:00
- daily TIME
#check = daily 21:30
- for certain events: on EVENT [arg]
possible events:
ppp-up: 3G/4G connection established ([ppp] only)
mip-up: MobileIP connected (first connect only)
dhcp <if>: interface <if> has obtained an IP-address
boot: after system boot
wlan <if>: wlan <if> has connected (wlan as client)
#check = on ppp-up
#check = on boot

Actions to take upon successful enrollment.
Further action can be defined using hook scripts (see above).
##
This parameter defines fundamental actions. Currently defined:

- ipsec: reload IPsec connections (all active)
#action = ipsec

##==
global options
##==

Directory where the certificate files are saved.
It is possible to start the SCEP client with this directory empty.
The directory is created if it doesn't exist yet.
directory = /etc/certs/ipsec

Number of days before certificate expiration, when the SCEP client
is to try and renew the certificate.
days = 7

Size of private key to generate if no key is present.
Values: 768, 1024, 2048
key_size = 2048

Algorithm to use for key signature.
One of md5, sha1, sha224, sha256, sha384, sha512.
signature = md5

##==
CA options
##==

URL to contact on the SCEP server.
For MS servers, this has the form
http://<server>/certsrv/mscep/mscep.dll
server = http://172.23.148.199/certsrv/mscep/mscep.dll

Add support for virtual host on server side.
Setting this to yes results in an additional
Host: <serverip>
line in the request to the server. If unsure, say yes.
virtual_host = yes

Encryption used in communication with the SCEP server.
Possible values: des, 3des, blowfish
encryption = des

Name of the CA certificate file. A second file with the same name
but prefixed with enc- is also created.
ca-file = ca-cert.pem

##==
certificate options
##==

Challenge password, used in communications with the SCEP server.
password = verysecret

Distinguished Name of the CA-certificate.
CA-DN = C=CH, ST=ZH, L=Zurich, O=anyweb, OU=IT, CN=anyca

Name of the certificate file
cert-file = cert.pem

Name of the private key file
key-file = key.pem

DN data for the certificate. Allowed parameters:
Country, State, Location, Organization, OrgUnit, CommonName, Email
Country = CH
State = zh
Location = zurich
Organization = anyweb
OrgUnit = IT
CommonName = AnyRover001
Email = acc@anyweb.ch

alternative name for certificate.
altname = info@anyweb.ch

[pelix]
##
(34) PELIX
##
start = no

Listen for GPRMC messages on this socket
listen = tcp, 127.0.0.1:13181

IP-Address and Port of PELIX server
Currently only one target supported.
target = 192.168.1.1:11310

Source address and port to use when contacting PELIX server.
If not given, choose according to routing table.
Syntax:
#source = ipaddr[:port]
#source = 192.168.1.3

Time in seconds to wait if connecting to server fails until
the next retry is due.
retry = 5

Send position message every X seconds
interval = 10

How to send coordinates to PELIX server:
CH1903, WGS84 microdegrees, WGS84
coordinates = WGS84 microdegrees

ID: usually IMEI
Has to be entered manually until further notice.
id = 359515050012345

Login credentials for PELIX server
username = user
password = passwd

Retransmit un-acked position messages?
retransmit = no

[dsl]
##
(35) DSL
##

Start DSL modem
start = no

mode = [dhcp|pppoe|eth]
Mode: dhcp: For simple links where the client just makes DHCP.
(Swisscom: for private customers)
pppoe: For links where PPPoE is necessary.
(Swisscom: for corporate customers)
eth: The modem terminates the IP connection and plays
DHCP server for the AnyRover.
** not supported yet. **
mode = dhcp

layer2 = ATM, PTM
ATM = Asynchronous Transfer Mode (53 byte cells)
PTM = Packet Transfer Mode (up to 1500 byte packets)
G.Dmt, G.lite, T1.413 only support ATM
ADSL2 and ADSL2+ support both ATM and PTM
VDSL2 only supports PTM
#layer2 = ATM
layer2 = PTM

##==
Layer 2 parameters
##==

Set modulation mode for DSL line. List all desired modes
separated by comma.
Available modes:
##--
- G.Dmt: "normal" original ADSL
- G.lite: better noise immunity (longer lines), half data rate
- T1.413: north american standard (ANSI)
##--
- ADSL2: up 25-138kHz, down 138-1104kHz
- AnnexL: long lines (up to 7km), up 0-138kHz, down 138-552kHz
##--

- ADSL2+: up 25-138kHz, down 138-2208kHz
- AnnexM: up 25-276kHz (doubled), down 276-2208kHz
##--
- VDSL2
##--
Default value (if not set): ADSL2, ADSL2+, VDSL2
modulation = ADSL2, ADSL2+, VDSL2
modulation = ADSL2, ADSL2+, VDSL2

DSL Capabilities
SRA and bitswap can both be enabled "yes" or disabled "no".
Bitswap is relevant for G.Dmt, G.lite and T1.413 only.
If set to yes, the modem can adapt data rates to current
quality of the line.
SRA = Seamless Rate Adaptation, for ADSL2 and up.
SRA allows the modem to adjust the data rate dynamically
based on current line quality.
Not all DSL modems support SRA.
Default: Bitswap enabled, SRA disabled
bitswap = yes
sra = no

VDSL2 profiles
Only relevant if modulation VDSL2 is enabled. Otherwise ignored.
Available profiles: 8a, 8b, 8c, 8d, 12a, 12b, 17a, 30a
The profile defines the frequency band usage on the line.
All profiles have
Downlink D1: 0.138-3.75 MHz
Uplink U1 3.75-5.2 MHz
Downlink D2: 5.2-8 MHz
Additionally:
- 12: U2 8.5-12 MHz
- 17: U2 8.5-12 MHz, D3 12-17.664 MHZ
- 30: U2 8.5-12 MHz, D3 12-23 MHz, U3 23-30 MHz
Default value (if not set): 12a, 17a, 30a
profile = 12a, 17a, 30a

US0
Use Uplink Band 0 (25-138kHz)
Only relevant if modulation VDSL2 is enabled. Otherwise ignored.
Default value (if not set): yes
us0 = yes

##==
mode = DHCP
##==

IP address of the DSL device. The interface is called dsl0.
Syntax is identical to the parameter ipaddr in the [system] section.
Some Swisscom DSL links need the vendor class identifier string
to be set to "100008,0001".
#ipaddr = dhcp default nolinklocal metric:20 vendor:100008,0001
ipaddr = dhcp default nolinklocal metric:20

##==
mode = PPPoE
##==

Username for PPPoE Login
username = user

Password for PPPoE Login
password = pass

Define whether to set a default route through DSL modem
defaultroute = yes

Metric of the default route (if set)
defaultmetric = 70

[8021x]
##
(37) IEEE 802.1X Port security
##

This section contains all parameters for IEEE 802.1X port security.
The section can either define the AnyRover to be an 802.1X supplicant,
i.e. the AnyRover authenticates with the remote port before starting
any communications. Or the AnyRover can close its switch ports
and only accept traffic after a successful 802.1X authentication.

Name must be the first argument and defines the interface, which
this section belongs to. E.g. vlan2
This section has no effect if the parameter "ipaddr" belonging to
this interface does not contain the keyword 8021x.
name = vlan2

Mode: supplicant or authenticator.
Must be the second argument after name.
Alternatively: client or server.
mode = supplicant

FIXME: is this actually used?
eapol_version = 1

Define how the port should behave when clients authenticate:
single-host: Only one host can be authenticated at a time.
When a second host authenticates, the first will be
deauthenticated (default mode).
multi-host: When one client authenticates successfully, the port
is open for all possible clients.
Needed e.g. if another 802.1x enabled switch is
connected to this port.
multi-auth: Several hosts can authenticate on this port. Used when
a non-802.1x switch is connected.
Note: When the cable is unplugged, all hosts are

deauthenticated.
port_mode = single-host

Key managment protocol. Possible values: PSK, EAP
key_management = EAP

List of EAP methods to use (comma separated):
Possible values: PEAP, TLS, TTLS, MD5, MSCHAPV2
eap = PEAP

Pre shared key for PSK authentication
pre_shared_key = verysecretkey

Identity string for EAP authentication
identity = eapuser

Password string for EAP authentication
password = verysecret

Phase 1 (outer authentication, i.e. TLS tunnel) parameters.
This is a string with field-value pairs, e.g.
peapver=0
phase1 =

Phase 2 (inner authentication with TLS tunnel) parameters.
This is a string with field-value pairs, e.g.
auth=MSCHAPV2
phase2 = auth=MSCHAPV2

Root certificate to use for cert based authentication.
References a [certificate] section.
#root = 8021x-root

Certificate to use for cert based authentication.
References a [certificate] section.
#cert = 8021x-cert

Private key for certificate.
References a [certificate] section.
#key = 8021x-key

##--
MAC Authentication Bypass
##--

Add MAC address that does not have to authenticate.
The Radius server is not contacted for this address.
#mab = 00:11:22:33:44:55

##--
external Radius server (for authenticator mode only)
##--

Define IP address to use as source for communication with
radius server.
Default: use address according to routing table
#source_addr = 192.168.1.3

The IP address of the access point (used as NAS-IP-Address)
If not given, the system uses the IP address of the WLAN card.
radius_ipaddr = 192.168.1.3

IP address and port of the Radius server. If port is not given,
the default port 1812 is used.
Multiple Radius and Accounting servers can be configured by repeating
these two statements. They are used if the first one does not reply.
radius_server = 192.168.1.1:1812

The shared secret used for accessing the Radius server.
radius_secret = thisisverysecret

IP address and port of the Accounting server. If port is not given,
the default port 1813 is used.
radius_accounting = 192.168.1.1:1813

The shared secret used for accessing the Accounting server.
radius_acct_secret = thisisevenmoresecret

The interval (in seconds) to try and return to first radius server.
If set, the system will try to return to the first server even if the
current server still works.
If not set, the system will try the given Radius servers consecutively
and stays with a working server until it fails.
#radius_retry = 600

Additional RADIUS attributes
Specifiy additional RADIUS attributes that are sent to the RADIUS
server.
Format: attribute = <attr_id>[:<syntax:value>]
attr_id: RADIUS attribute type
syntax: s = string, d = integer, x = octet string
value: attribute value in format specified by syntax
If syntax and value are omitted, a null value (0x00) is used.
Examples (cf. RFC2865):
attribute = 6:d:2 -> Service-Type = 2 (Framed)
attribute = 61:d:15 -> NAS-Port-Type = 15 (Ethernet)

###===
(37a) 802.1X Certificates
###===
[certificate]
name = 8021x-root
type = file
file = /etc/certs/8021x/ca.pem
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

[certificate]
name = 8021x-cert
type = file
file = /etc/certs/8021x/cert.pem
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

[certificate]
name = 8021x-key
type = file
file = /etc/certs/8021x/key.pem
-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----

##
Mark the end of the file.
Do not remove this mark.
[EOF]
##
END OF FILE

C GNU General Public License

For further information about the GNU licenses see
www.gnu.org/licenses

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide
 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange;
or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine-readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer

 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free
Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals

of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it
does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
along
 with this program; if not, write to the Free Software Foundation,
Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show
w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the
appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James
Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with
the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

	1 Overview
	1.1 Description
	1.2 Hardware
	1.3 Software
	1.4 Libraries and tools

	2 Short overview or only cowards read manuals
	3 Operation of the AnyRover – Hardware
	3.1 Front side
	3.1.1 Antennas
	3.1.2 USB
	3.1.3 Console
	3.1.4 Network
	3.1.5 LEDs
	3.1.6 Mode and Reset Button

	3.2 Back side
	3.2.1 Power
	3.2.2 GPIO connector
	3.2.3 DR inputs (only for dead reckoning variants)
	3.2.4 Serial ports (optional)
	3.2.5 DIP Switch
	3.2.6 SIM card

	3.3 Internal connections
	3.3.1 MicroSD Card
	3.3.2 Modem
	3.3.3 PoE
	3.3.4 Wireless LAN

	3.4 Vehicle integration
	3.4.1 Installation location
	3.4.2 Antenna installation
	3.4.3 Set installation position and backup signal
	3.4.4 Calibration drive

	3.5 Dimensional drawing

	4 Configuration
	4.1 System configuration
	4.1.1 Changing the configuration on the command line
	4.1.2 Changing the configuration with a memory stick
	4.1.3 Changing the configuration using SMS
	4.1.4 Querying the configuration using SMS
	4.1.5 Reset the configuration
	4.1.6 Saving configuration templates

	4.2 Sections
	4.2.1 [system]
	4.2.2 [switch]
	4.2.3 [time]
	4.2.4 [watchdog]
	4.2.5 [crontab]
	4.2.6 [gpio]
	4.2.7 [gps]
	4.2.8 [sms]
	4.2.9 [modem]
	4.2.10 [usb]
	4.2.11 [dhcp]
	4.2.12 [dhcprelay]
	4.2.13 [ftp]
	4.2.14 [tftp]
	4.2.15 [firewall]
	4.2.16 [dyndns]
	4.2.17 [ppp]
	4.2.18 [chat_script]
	4.2.19 [wan]
	4.2.20 [ipsec]
	4.2.21 [certificate]
	4.2.22 [openvpn]
	4.2.23 [clientconfigfile]
	4.2.24 [tunnel]
	4.2.25 [bridge]
	4.2.26 [banner]
	4.2.27 [daemons]
	4.2.28 [script]
	4.2.29 [webserver]
	4.2.30 [wlan]
	4.2.31 [authentication]
	4.2.32 [ospf]
	4.2.33 [snmp]
	4.2.34 [dns]
	4.2.35 [serports]
	4.2.36 [openconnect]
	4.2.37 [mobileip]
	4.2.38 [scep]
	4.2.39 [pelix]
	4.2.40 [dsl]
	4.2.41 [8021x]

	5 Support
	5.1 Lock files
	5.2 Helper programs
	5.2.1 Modem status
	5.2.2 Sending SMS
	5.2.3 Central service
	5.2.4 GPIO
	5.2.5 AD converter
	5.2.6 Acceleration sensor
	5.2.7 Datcom
	5.2.8 PIC-Tool

	5.3 Log files

	6 Sample configurations
	6.1 Permanent IPsec tunnel to the network
	6.2 IPsec tunnel on request
	6.3 IPsec server with multiple clients
	6.4 2 local subnets with NAT
	6.5 Wireless client
	6.6 Roaming between WLAN and 3G
	6.7 Wireless access point with DHCP server
	6.8 Multiple client connections over IPsec using PSK
	6.9 Sending files over E-mail
	6.10 IPsec server for Cisco VPN clients
	6.11 Setting GPO

